• Title/Summary/Keyword: Rolling Texture

Search Result 194, Processing Time 0.021 seconds

Texture of Asymmetric Rolled Aluminum sheets (알루미늄 비대칭압연 집합조직)

  • Akramov, S.;Kim, In-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.477-479
    • /
    • 2008
  • Drawability and other mechanical properties of sheet metals are strongly dependent on their crystallographic orientations. In this paper the formability of the AA 5052 Al alloy sheets was investigated after asymmetric rolling and subsequent heat treatment. In most cases, after asymmetric rolling specimens showed a fine grain size and subsequent heat treated specimens showed that the ND//<111> texture component were observed. The anisotropy of formability is often described by the plastic strain ratios (r-value) as a function of the angle to the rolling direction in sheet metal. For a good formability, a high r-value is required in sheet metals. In the asymmetry rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios have been investigated in this study. The plastic strain ratios of the asymmetry rolled and subsequent heat treated AA 5052 Al alloy sheets were higher than those of the original Al sheets. These could be related to the formation of ND//<111> texture components through asymmetric rolling in Al sheet.

  • PDF

Texture and Rolling Characteristics of AZ31 Magnesium Alloy (AZ31 마그네슘의 집합조직변화와 압연특성)

  • Akramov, S.;Kim, In-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.480-481
    • /
    • 2008
  • The aim of this work is to compare the microstructure, the texture, of an AZ31 Mg alloy processed via cold rolling process. Initial AZ31 Mg alloy sheet samples with strong {0002} texture were cut along the angles of 12.5 and 25 degrees to normal direction (ND). These specimens were rolled in room temperature condition. The microstructure was characterized by optical microscopy and the texture was measured by X-ray diffraction.

  • PDF

Study on crystal texture of PIT processed Bi-2223 multi-filamentary tape (PIT 공정으로 제조한 Bi-2223 다심 고온 초전도 선재의 결정 배향성에 관한 연구)

  • Choi, J.K.;Oh, S.S.;Ha, H.S.;Yang, J.S.;Yun, J.K.;Lee, N.J.;Ha, D.W.;Kwan, Y.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.59-63
    • /
    • 2002
  • The purpose of this paper is to investigate the crystal texture of the 2223 phase and its relationship with PIT processing parameter. Ag-sheathed Bi-2223 multi-filament tapes were prepared by changing rolling reduction ratio. We analysed the degree of texture for 2223 phase after heat-treatment. According to X-ray pole-figure, the texture of the filaments located near surface and center were not so different each other for all rolling conditions. we found a little higher degree of texture for 60% rolling reduction. But its difference is not so high compared with those tapes with a lower rolling reduction ratio. Reaction induced texturing seemed to contribute with a large portion under present condition.

  • PDF

Formation of Cross Rolling Textures in STS 430 Steel Sheet (STS 430 강에서 교차압연 집합조직의 형성)

  • 이재협;이창호;박수호;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.136-137
    • /
    • 2003
  • Recrystallization textures of ferritic stainless steel sheets of STS 430, the crystallographic texture was modified by means of cross rolling and subsequent annealing. The conventional normal rolling led to the formation of {334}<483> in the final recrystallization texture. Cross rolling in the present work was performed by a 45$^{\circ}$rotation of RD around ND. After recrystallization annealing the cross-rolled samples displayed stronger{111}//ND orientations. The cross rolled sample displayed a higher resistance against ridging.

  • PDF

Effect of Strain Slates on the Formation of Shear Textures during Rolling in fcc Metals (FCC 금속에서 압연 전단집합조직의 형성에 미치는 변형상태의 효과)

  • Kang C. K.;Choi W. G.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.483-486
    • /
    • 2005
  • In order to study the effect of strain states on the formation of shear textures during rolling in fcc metals, the evolution of textures was simulated by the full constrain model using various ideal strain states. Considering rolling as a two-dimensional problem, i.e., $\varepsilon_{22}\;=\;\varepsilon_{12}\;=\;\varepsilon_{23}\;=\;0$, the deviation from the plane-strain state manifest itself as nonzero contribution of $\varepsilon_{13}$. With increasing variations of $\varepsilon_{13}$, shear textures develop. The sign of ell hardly affects the evolution of textures. The texture simulation with various idealized strain states indicates that the ratio $\mid\varepsilon_{13}\mid/\mid\varepsilon_{11}\mid$ in each time interval in a roll gap plays a dominant role in the evolution of textures during rolling.

  • PDF

AZ3l Mg alloy Texture and Bending Characteristics (AZ31Mg 합금의 집합조직과 벤딩 특성)

  • Kim, In-Soo;Akramov, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.75-76
    • /
    • 2008
  • In this study, texture development and bending characteristics of strong {0002} textured were observed. AZ31 Mg alloy sheets were prepared along the angle of 0 and 12.5 degrees to the lolling direction or {0002} texture. Prepared samples with different angles to the rolling direction were rolled at room temperature condition and after subsequent heat treatment to investigate texture with x-ray diffractometer, respectively The specimen having along the angles of 0 degree to rolling direction shows the highest load and 12.5 degrees specimen shows the highest displacement among any other specimens in bending test.

  • PDF

Texture Control in Aluminum Alloy Sheets (알루미늄 합금판재의 집합조직 제어)

  • 김근환;강형구;최창희;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.198-201
    • /
    • 1997
  • Aluminum alloy sheets are considered as one of the high potential substitutes for steel sheets considering weight reduction of automobiles. However, aluminum alloy sheets have drawbacks in higher prices and inferior formability compared to steel sheets. In order to achieve good deep drawability, it is imperative to obtain well developed {111} texture which gives rise to higher plastic strain ratio. It is difficult to obtain this texture from conventional rolling and annealing processes. Therefore, an unconventional rolling process which enhances shear deformation has been experimentally studied to obtain the well developed {111} texture, which in turn gives rise to a substantial increase in plastic strain ratio.

  • PDF

Changes of Texture and Plastic Strain Ratio of Asymmetrically Rolled and Annealed Cu Sheet (I) (비대칭 압연과 열처리한 Cu 판의 집합조직과 소성변형비 변화 (I))

  • Lee, C.W.;Lee, D.N.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.354-360
    • /
    • 2019
  • The plastic strain ratio is one of the factors that affect the deep drawability of metal sheets. The plastic strain ratio of fully annealed Cu sheet is low because its texture has {001}<100>. In order to improve the deep drawability of Cu sheet, it is necessary to increase the plastic strain ratio of Cu sheet. This study investigate the increase of plastic strain ratio of a Cu sheet after the first asymmetry rolling and annealing, and the second asymmetry rolling and annealing in air and Ar gas conditions. The average plastic strain ratio (Rm) was 0.951 and |ΔR| value was 1.27 in the initial Cu sheet. After the second 30.1% asymmetric rolling and annealing of Cu sheet at 1000℃ in air condition, the average plastic strain ratio (Rm) was 1.03 times higher. However, |ΔR| was 0.12 times lower than that of the initial specimen. After the second 18.8% asymmetric rolling and annealing of Cu sheet at 630℃ in Ar gas condition, the average plastic strain ratio (Rm) was 1.68 times higher and |ΔR| was 0.82 times lower than that of the initial specimen. These results are attributed to the change of the texture of Cu sheet due to the different annealing conditions.

Asymmetric Rolling as Means of Texture and Ridging Control and Grain Refinement (집합조직과 이랑형표면결함의 제어 및 결정립 미세화 수단으로서의 비대칭압연)

  • Lee D.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.11-18
    • /
    • 2004
  • Asymmetric rolling, in which the circumferential velocities of the upper and lower rolls are different, can give rise to intense plastic shear strains and in turn shear deformation textures through the sheet thickness. The ideal shear deformation texture of fcc metals can be approximated by the <111> // ND and $\{001\}<110>$ orientations, among which the former improves the deep drawability. The ideal shear deformation texture for bcc metals can be approximated by the Goss $\{110\}<001>\;and\;\{112\}<111>$ orientations, among which the former improves the magnetic permeability along the <100> directions and is the prime orientation in grain oriented silicon steels. The intense shear strains can result in the grain refinement and hence improve mechanical properties. Steel sheets, especially ferritic stainless steel sheets, and aluminum alloy sheets may exhibit an undesirable surface roughening known as ridging or roping, when elongated along RD and TD, respectively. The ridging or roping is caused by differently oriented colonies, which are resulted from the <100> oriented columnar structure in ingots or billets, especially for ferritic stainless steels, that is not easily destroyed by the conventional rolling. The breakdown of columnar structure and the grain refinement can be achieved by asymmetric rolling, resulting in a decrease in the ridging problem.

  • PDF

Effect of lubrication on the evolution of inhomogeneous textures in ferritic stainless steel sheets during hot rolling (페라이트계 스테인리스강의 열간 압연 시 불균일 집합조직에 미치는 윤활 효과)

  • Kang C. K.;Park S. H.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.453-455
    • /
    • 2005
  • Ferritic STS 439 Steel sheet were deformed by hot rolling with and without lubricant. The effect of friction between roll and specimen on inhomogeneous texture was studied by means of EBSD, XRD texture analysis. The textures were compared with those of obtained by Taylor FEM simulation. High friction between roll and sheet gave rise to the formation of the inhomogeneous shear texture through thickness.

  • PDF