• Title/Summary/Keyword: Rolling Behavior

Search Result 335, Processing Time 0.029 seconds

Analysis Mechanism of Roll Forming Manufacturing Process using HIP (Hot Isostatic Press) Process (HIP(열간 등방압) 공정을 이용한 압연 롤 제조 공정의 해석 메커니즘)

  • W. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.114-121
    • /
    • 2023
  • During rolling, rolling mill rolls endure wear when shaping metal billets into a desired form, such as bars, plates, and shapes. Such wear affects the lifespan of the rolls and product quality. Therefore, in addition to rigidity, wear performance is a key factor influencing the performance of rolling mill rolls. Conventional methods such as casting and forging have been used to manufacture rolling mill rolls. However, powder alloying methods are increasingly being adopted to enhance wear resistance. These powder manufacturing methods include atomization, canning to shape the powder, hot isostatic pressing to combine the powder alloy with conventional metals, and various wear performance tests on rolls prepared with powder alloys. In this study, numerical simulations and experimental tests were used to develop and elucidate the wear analysis mechanism of rolling mill rolls. The wear characteristics of the rolls under various rolling conditions were analyzed. In addition, experimental tests (wear and surface analysis tests) and wear theory (Archard wear model) were used to evaluate wear. These tests were performed on two different materials in various powder states to evaluate the different aspects of wear resistance. In particular, this study identifies the factors influencing the wear behavior of rolling mill rolls and proposes an analytical approach based on the actual production of products. The developed wear analysis mechanism can serve the future development of rolls with high wear resistance using new materials. Moreover, it can be applied in the mechanical and wear performance testing of new products.

A Integral Model for the Analysis of Strip Temperatures During ROT Cooling in Hot Strip Rolling (ROT 냉각과정의 Strip 두께방향의 열전달 해석)

  • An J. Y.;Hwang S. M.;Sun S. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.125-128
    • /
    • 2001
  • A finite element-based, integrated process model is presented for coupled analysis of the thermal and metallurgical behavior of the strip occurring on the run-out-table in hot strip rolling. The validity of the proposed model is examined through comparison with measurements. The models capability of revealing the effect of cooling pattern on strip temperatures and the optimal cooling pattern are demonstrated through a series of process simulation. In order to improve strip shape and control temperature history of thickness direction for strip during ROT cooling.

  • PDF

Micro-scale Vibration Phenomena in a Linear Motion Guide Having Rolling Elements (구름 요소를 사용하는 LM 가이드에서의 마이크로스케일 진동현상)

  • 이용섭;김윤영;최재석;유정훈;이동진;이석원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.332-336
    • /
    • 2004
  • To position precision machines accurately, linear motion (LM) guides having rolling elements can be used. For ultra-accurate positioning control of the precision machines, the understanding of the dynamic behavior of the LM guide at the macro and/or micro scales is most critical, but the research on this subject is rare. The objective of the present research is to observe the vibration phenomena of the LM guide. Bails are used as the rolling elements in this work. Several experiments show the nonlinear characteristics of the LM guide such as hysteresis behavior and force-dependent natural frequencies phenomena.

  • PDF

Micro-scale Vibration Phenomena in a Linear Motion Guide Having Rolling Elements (구름 요소를 사용하는 LM 가이드에서의 마이크로스케일 진동현상#)

  • 이용섭;최재석;유정훈;이동진;이석원;김윤영
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1029-1034
    • /
    • 2004
  • Linear motion ( LM) guides having rolling elements have been used to position precision machines accurately. For ultra-accurate Positioning control of Precision machines, the understanding of the dynamic behavior of the LM guide at the macro and/or micro scales is most critical, but the research on this subject is rare. The objective of the present research is to investigate the vibration phenomena of the LM guide where balls are used as the rolling elements. Several experiments show the nonlinear characteristics of the LM guide such as hysteresis behavior and force-dependent natural frequencies phenomena.

An-isotropic Corrosion Behavior of A Marine Steel with Cold Rolling

  • Yang, So E.;Song, Churl H.;Choi, Ga Yeon;Choi, Yong;Choe, Jin I.;Jung, Hwan G.;Kho, So W.;Lee, Chang S.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.330-330
    • /
    • 2012
  • Microstructure of a marine steel with a modified AISI-1004 composition was controlled by cold rolling and heat treatment, which corrosion behavior in an artificial sea water was electrochemically determined for the each deformation direction. The lowest corrosion rate of the surface normal to the rolling direction is related t the (111) fiber structure. Additional annealing at $550^{\circ}C$ for 24 hours improves the corrosion rate which is related to re-crystallization and reduction of (111) concentration.

  • PDF

An Investigation of Deformation Behavior of Plate Ends in Edge Rolling (후판 에지압연시 선후단부의 변형거동)

  • 천명식;황상무;이준정;김종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1278-1284
    • /
    • 1992
  • In plate rolling, it is desired to reduce the trimming loss by controlling the formation of defective end shapes. For this reason, edge rolling is frequently performed in the plate mill. In this paper, the effect of various process variables on the deformation of plate ends in edge rolling is examined by conducting experiments and finite element computer simulation. A focus is given to investigating the effect of edging on the width of the deformed plate trimming-free plate rolling.

CFD-Based Flow Analysis of Rolling Elements in Water-Lubricated Ball Bearings (CFD를 이용한 수윤활 볼베어링의 구름 요소 주위의 마찰 토크분석)

  • Jo, Jun Hyeon;Kim, Choong Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.218-222
    • /
    • 2013
  • Water-lubricated ball bearings consist of rolling elements, an inner raceway, an outer raceway, a retainer, and an operating lubricant. In the water environment, ball bearings are required to sustain high loads at high speeds under poorly lubricated conditions. For the analysis of bearing behavior, friction torque is considered as the main factor at various flow rates, rotating speeds, and roughnesses between the rolling element and raceways. When the bearing operates at high rotating speeds, the friction torque between the raceway and rolling elements increases considerably. This frictional torque is an important factor affecting bearing reliability and life cycle duration. For understanding the flow conditions in the inner part of the bearing, this study focuses on the flow around the rotating and revolving rolling elements. A simple model of fluid flow inside the ball bearing is designed using the commercial CFD program ANSYS.

Creepage Model Analysis for a Tilting Train (틸팅열차의 크리피지 모델 해석)

  • Kang, Chul-Goo;Kim, Ho-Yeon;Lee, Nam-Jin;Kim, Min-Soo;Goo, Byeong-Choon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.231-239
    • /
    • 2009
  • Traction and braking of trains are due to the rolling contact of the wheel on the rail, and the rolling contact is fundamental to an understanding of the behavior of the railroad system. The way in which the forces are transmitted in the rolling contact is complex and highly nonlinear. This paper describes a rolling contact theory, a creepage model between wheel and rail, and a dynamic model of the tilting train Hanvit-200. The validity of the model is verified through simulation study using Simulink.

Dynamical Rolling Analysis of a Vessel in Regular Beam Seas

  • Lee, Sang-Do;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.325-331
    • /
    • 2018
  • This paper deals with the dynamical analysis of a vessel that leads to capsize in regular beam seas. The complete investigation of nonlinear behaviors includes sub-harmonic motion, bifurcation, and chaos under variations of control parameters. The vessel rolling motions can exhibit various undesirable nonlinear phenomena. We have employed a linear-plus-cubic type damping term (LPCD) in a nonlinear rolling equation. Using the fourth order Runge-Kutta algorithm with the phase portraits, various dynamical behaviors (limit cycles, bifurcations, and chaos) are presented in beam seas. On increasing the value of control parameter ${\Omega}$, chaotic behavior interspersed with intermittent periodic windows are clearly observed in the numerical simulations. The chaotic region is widely spread according to system parameter ${\Omega}$ in the range of 0.1 to 0.9. When the value of the control parameter is increased beyond the chaotic region, periodic solutions are dominant in the range of frequency ratio ${\Omega}=1.01{\sim}1.6$. In addition, one more important feature is that different types of stable harmonic motions such as periodicity of 2T, 3T, 4T and 5T exist in the range of ${\Omega}=0.34{\sim}0.83$.

The Lubrication Characteristics of Rotary Compresssor for refrigeration & air-conditioning (Part I; The analysis of Rolling Piston behavior ) (냉동, 공조용 로터리 콤프레서의 윤활 특성 제1보;롤링 피스톤의 거동해석)

  • 조인성;김진문;백일현;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.7-16
    • /
    • 1996
  • Rapid increase of refrigeration & air-conditioning system( r & a system ) in modern industries brings attention to the urgency of development as a core technology in the area. And it required to the compatibility problem of r & a system to alternative refrigerant for the protection of environment. Then, it is requested to research about the lubrication characteristics of refrigerant compressor which is the core thechnology in the r & a system. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressor. Therefore, theoetical investigation of the lubrication characteristics of rotary compressor for r & a system is studied. And the Runge-Kutta method is used for the analysis of the behavior of rolling piston in the rotary compressor. The results show that the rotating speed of shaft and the discharge pressure have an important effect upon the angular velocity of the rolling piston. This results give important basic data for the further lubrication analysis and design of the rotary compressor.

  • PDF