• Title/Summary/Keyword: Roller printing

Search Result 45, Processing Time 0.028 seconds

Analysis of Film Flow Around Rotating Roller Partially Immersed in Ink (잉크에 부분적으로 잠긴 회전하는 롤 주위의 액막 유동 해석)

  • Yu, Seung-Hwan;Um, Suk-Kee;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.1017-1023
    • /
    • 2007
  • This study is intended to analyze the effect of thin ink-film thickness around rotating printing roll on the printing quality in the gravure printing process which is used for making electronics circuit like a RFID tag with a conductive ink. The present work numerically estimates the film thickness around rotating roller partially immersed in ink for which the volume of fluid (VOF) method was adopted to figure out the film formation process around rotating roller. Parameter studies were performed to compare the effect of ink properties (viscosity, surface tension), operating condition (roller rotating speed, initial immersed angle) on the film thickness. The result indicates that the film thickness has a strong dependency on the rotating speed, while the surface tension has negligible effect.

The analysis of film flow around rotating roller partially immersed in ink (잉크에 부분적으로 잠겨 회전하는 롤 주위의 액막 유동 해석)

  • Yu, Seung-Hwan;Kang, Soo-Jin;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2279-2284
    • /
    • 2007
  • This study is intended to analyze the effect of thin ink-film thickness around rotating printing roll on the printing quality in the gravure printing process which is used for making electronics circuit like a RFID tag with a conductive ink. The present work numerically estimates the film thickness around rotating roller partially immersed in ink, for which the volume of fluid (VOF) method was adopted to figure out the film formation process around rotating roller. Parameter studies were performed to compare the effect of ink viscosity, surface tension, roller rotating speed, immersed angle on the film thickness. The result indicates that the film thickness has a strong dependency on the fluid viscosity, while the surface tension has negligible effect.

  • PDF

Liquid Crystal-based Imaging of Biomolecular Interactions at Roller Printed Protein Surfaces

  • Park, Min-Kyung;Jang, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1223-1227
    • /
    • 2010
  • In this study, the orientational behavior of thermotropic liquid crystals (LC) supported on a film of protein receptors was examined. Avidin was roller printed and covalently immobilized onto the surface of gold using NHS/EDC chemistry. The orientation of nematic 4-cyano-4'-pentylbiphenyl (5CB) was found to be parallel to the plane of the printed avidin surface before incubation with a solution of biotin. However, protein-receptor complexation induced a random orientation of 5CB, where protein-receptor complexes disturbed the nanoscale topography of the printed protein surface. Atomic force microscopy and ellipsometry was used to confirm printing and the specific interaction of proteins. These results demonstrate that the combination of LC and roller printing can be used to detect specific interactions between biomolecules by manipulating the orientational behavior of LC to the printed protein surfaces.

Distortion of Printed Patterns in Printed Electronics (전자 인쇄에서의 인쇄 패턴 왜곡)

  • Kim, Chung-Hwan;Lee, Taik-Min;Kim, Dong-Soo;Choi, Byung-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.74-80
    • /
    • 2007
  • The distortion of printed pattern is frequently observed in gravure offset printing process, which can be a serious problem in printing process for printed electronics. The mechanism of pattern distortion is studied and the factors which affect the amount and shape of distortion are found using FEM. The amount and shape of distortion is influenced by material properties of the roller, thickness of roller, applied load, and so on. As the printing pressure increases and Possion ratio increases, the degree of the image distortion increases. And the increase of the thickness of rubber roller brings a large distortion of image, too. In some cases, the distortion of printed pattern can reach a few hundred micromillimeters. The comparison of the experiment result and the simulation result shows good agreement in their quantitative tendency.

High-Contrast Imaging of Biomolecular Interactions Using Liquid Crystals Supported on Roller Printed Protein Surfaces

  • Park, Min-Kyung;Jang, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3269-3273
    • /
    • 2012
  • In this study, we report a new method for the high contrast imaging of biomolecular interactions at roller printed protein surfaces using thermotropic liquid crystals (LCs). Avidin was roller printed and covalently immobilized onto the obliquely deposited gold surface that was decorated with carboxylic acid-terminated self-assembled monolayers (SAMs). The optical response of LCs on the roller printed film of avidin contrasted sharply with that on the obliquely deposited gold surface. The binding of biotin-peroxidase to the roller printed avidin was then investigated on the obliquely deposited gold substrate. LCs exhibited a non-uniform and random orientation on the roller printed area decorated with the complex of avidin and biotin-peroxidase, while LCs displayed a uniform and planar orientation on the area without roller printed proteins. The orientational transition of LCs from uniform to non-uniform state was triggered by the erasion of nanometer-scale topographies on the roller printed surface after the binding of biotin-peroxidase to the surface-immobilized avidin. The specific binding events of protein-receptor interactions were also confirmed by atomic force microscopy and ellipsometry. These results demonstrate that the roller printing of proteins on obliquely deposited gold substrates could provide a high contrast signal for imaging biomolecular interactions using LC-based sensors.

A Study on the Cellulose Blend Knit Fabrics using Burn-out Printing Convergence Technology (셀룰로오스 혼방 니트 편포의 착색번아웃 날염복합기술에 관한 연구)

  • Cho, Ho-Hyun;Chung, Myung-Hee;Lee, Jong-Lyel
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.16 no.4
    • /
    • pp.229-235
    • /
    • 2014
  • This study conducted a research on burn-out printing convergence technology for cellulose blend knit fabrics. Printing technology, which forms color pattern on the fabric, can be generally classified into four according to printer or printing method, e.g. screen printing, roller printing, rotary printing, digital printing. However, these printing methods are flat in design or pattern, which have limitation to overcome monotonousness of fabric, so that recently burn-out process method, which expresses three-dimensional pattern effect by treating chemical on the surface of fabric as the method to appeal its esthetics to the customers. Particularly, in case of cellulose/polyester composite material, first, it is proceeded in 2 processes, by dyeing cellulose or polyester fabric and burning out cellulose fabric, in this process, due to pollution caused by disperse dye migration, color of polyester fabric part could be discolored, which has high falt risk. This research considered coloring burn-out technique, which simultaneously proceed dyeing and burn-out by reducing dyeing and burn-out process to 1 stage, which were proceeded in 2 stages previously. As the research result, it was confirmed that reasonable depth of roller was 0.04~0.06mm in roller printing process, heat treatment condition of burn-out far-infrared radiation was $185^{\circ}C{\times}30m/min$. Color fastness to washing was confirmed to be 4-5 grade, color fastness to rubbing, 3-4 grade, color fastness to light, 4 grade. Also, it was confirmed that energy reduction effect appeared 38.19%, in case of energy cost per yard compared to the existing production, also, 19.74%, in case of production cost.

  • PDF

Variable PID Gain Control of Winder Tension of Roll-to-Roll Printing System using Estimation of Winder-Roll Radius (롤투롤 시스템의 와인더 반경 추정을 이용한 와인더 장력의 가변 PID이득 제어)

  • Park, Jong-Chan;Jeon, Sung Woong;Nam, Ki Sang;Kim, Chung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.755-760
    • /
    • 2013
  • The dynamics of the winder roller of a roll-to-roll printing system for printed electronics is a time-varying system because of the variation of the winder roller radius owing to rewinding or unwinding of the web. Therefore, an adaptive control method considering the time-variant characteristics is required for precise tension control. In this study, the variable PID gain method is applied to the actual roll-to-roll system and verified by experiments for unwinder tension control. The required value of the winder roller radius for the application of the variable PID gain is estimated from the measurement of the winder tension and winder motor torque. The simulation results as well as experimental results show that the fixed PID gain control cannot stabilize the tension of the winder roller with varying winder roller radius. On the other hand, the variable PID gain method can control the tension of the winder roller regardless of the winder roller radius.

FSI(Fluid-Structure Interaction) Analysis for Harmonious Operation of High-Speed Printing Machine

  • Kim, Jin-Ho;Lee, Jae-Woo;Park, Soo-Hyung;Byun, Do-Young;Byun, Yung-Hwan;Lee, Chang-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.137-146
    • /
    • 2008
  • Proper amount of entrained air and nip force should be also considered to minimize ballooning phenomenon since tight contact between a roller and web is required. In this paper, various web materials, PET(Polyester) and OPP(Oriented Poly Propylene) have been selected and investigated to satisfy high-speed printing requirement. Several web speeds, web tensions, and temperature conditions are imposed on each web materials and the pressure and gap profiles as well as nip force have been calculated. Increase of both the winding roller radius and the incoming wrap angle is considered under proper taper tension at 500 m/min of rewinding roller. By solving coupled Reynolds equation and web deflection equation simultaneously, the fluid-structure interaction process has been developed and is applied to the rewinding roller to investigate the ballooning phenomenon which causes guiding problems in high-speed printing performance conditions. By adjusting the linear taper tension, stress distribution between rewinding webs can be remarkably reduced and stable pressure and gap profile with ignorable ballooning phenomenon have been found.

Research on the Airflow and Air Entrainment on Roll-to-Roll System (Roll to Roll 공정상의 유동장 계측 및 공기유입)

  • Kim, Sung-Kyun;Park, Joon-Hyung;Liem, Huynh Quang
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.39-44
    • /
    • 2008
  • The Roll-to-Roll system including continuous flexible thin materials and roller has its wide range of applications especially in the electronic printing industry. The industry is growing rapidly and the printing speed is also improving. However, the printing machine based on web and roller system has it own problem. As the web speed increases, the failure to maintain the contact may occur and the air entrain between the roller and the paper web may exist. Air bubbles may remain attached to electronic ink on the web causing defects on product surface. With the development of image processing technique, the airflow around the web and rolls can be visualized and calculated by PIV method. In our experiment, the simple web and rolls system is used to R2R simulator. The flow field is studied at various web speeds and positions. The result shows that the flow field has complicated structure with turbulent characteristic and the main trend of flow is obtained by taking time average of flow field.

Preparation and Properties of Printing Rubber Roller : (I) Oil Resistance and Mechanical Properties of Butabiene Rubber/Nitrile Rubber Compounds (인쇄용 고무roller의 제조와 물성: (I) 부타디엔고무와 니트릴고무 혼련물의 내유성 및 기계적 성질)

  • 박찬영
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.2
    • /
    • pp.83-101
    • /
    • 2000
  • In this experiment butadiene rubber(BR)/acrylonitrile butadiene rubber(NBR) blends was prepared and then the applicability of BR/NBR blends as printing rubber roller was examined. With the aid of open 2-roll mill, BR, NBR and another chemical additives were compounded. Then rubber vulcanizates were manufactured by hot press and maximum torque, Mooney viscosity, mechanical properties and oil resistance of the test specimens were measured. With prolonged oil aged treating time, BR/NBR blends became soft and so the hardness of blends decreased. It could be explained by the swelling of rubber matrix with oil penetration in to rubber molecules. The undesirable low value of oil resistance of BR was significantly improved by blending BR with NBR.

  • PDF