• Title/Summary/Keyword: Rollable

Search Result 17, Processing Time 0.026 seconds

Mechanical Modeling of Rollable OLED Display Apparatus Considering Spring Component

  • Ma, Boo Soo;Jo, Woosung;Kim, Wansun;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.19-26
    • /
    • 2020
  • Flexible displays have been evolved into curved, foldable, and rollable as the degree of bending increases. Due to the presence of brittle electrodes (e.g. indium-tin oxide (ITO)) that easily cracked and delaminated under severe bending deformation, lowering mechanical stress of the electrodes has been critical issue. Because of this, mechanical stress of brittle electrode in flexible displays has been analyzed mostly in terms of bending radius. On the other hand, in order to make rollable display, various mechanical components such as roller and spring are needed to roll-up or extend the screen for the rollable display apparatus. By these mechanical components, brittle electrode in the rollable display is subjected to the excessive tensile stress due to the retracting force as well as the bending stress by the roller. In this study, mechanical deformation of rollable OLED display was modeled considering boundary conditions of the apparatus. An analytical modeling based on the classical beam theory was introduced in order to investigate the mechanical behavior of the rollable display. In addition, finite element analysis (FEA) was used to analyze the effect of mechanical components in the apparatus on the brittle electrode. Furthermore, a strategy for improving the mechanical reliability of the rollable display was suggested through controlling the stiffness of adhesives in the display panel.

Designing an Evaluation Method for the in-situ Impact Strength of Rollable Devices

  • Hyojung Son;Ki-Yong Lee;Byoung-Seong Jeong
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.148-153
    • /
    • 2024
  • In this study, a methodology for evaluating impact strength in rollable devices was developed, focusing on measuring impact strength and evaluating rolling and unrolling durability simultaneously, with findings reported from tests on a real demonstration unit. The study utilized a flexible and rollable polyimide (PI) substrate for the evaluations. The chosen parameters for this methodology were a flat-type impactor, weights of 300 g, 500 g, and 1000 g, a rolling shaft ranging from 30 R to 5 R, and the positioning of the impactor. The results revealed that the difference in defect rates when comparing the 300 g and 500 g weights was minimal. However, the adoption of a 1000 g weight markedly increased the defect count due to damage to the PI film's surface. Furthermore, an uptick in rolling and unrolling cycles led to more pronounced surface scratches on the PI film. These methods and findings are poised to make a substantial contribution towards refining reliability testing for a wide array of rollable device applications, including smartphones, watches, pads, and wearable technology.

Sliding Plastic Rollable Bistable LCD

  • Buchnev, O.;Reshetnyak, V.;Reznikov, Yu.;Tereshchenko, O.;Dusheiko, M.;Cross, L.;Kwon, Soon-Bum
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.297-299
    • /
    • 2004
  • We developed a rollable bistable LCD whose substrates are bonded by elastic glue and slide over one other when the LCD is rolled. We produced a 2.5 inch active area, 16x16 pixels prototype and demonstrated multifold bending and rolling of the display in a tube with 2 cm diameter.

  • PDF

An Adaptive matrix-based Secure Keypad designed for Rollable and Bendable Display Environments (롤러블 및 벤더블 디스플레이 환경에 적합한 가변행렬 기반 보안 키패드)

  • Dong-Min Choi
    • Journal of Industrial Convergence
    • /
    • v.22 no.2
    • /
    • pp.63-71
    • /
    • 2024
  • Conventional methods like PIN used in conventional smartphone form factor have not considered the variation in display structure or screen size. As a result, when applied to recent variable display-based smartphones, the secret information input unit may get reduced or enlarged, leading to vulnerabilities for social engineering attacks due to deformation of the display area. This study proposes a secure keypad that responds to changes in display size in rollable and bendable smart phones. Firstly, the security problems that may arise when applying classical authentication methods to new form factors were analyzed, and corresponding security requirements were derived. The proposed security keypad addresses the key input error problem that can occur when the screen size is small. The arrangement and size of keys can be deformed with the spacing suitable for input depending on the display size of rollable and bendable smartphones. The study also considered the problem of leaking input information for social engineering attacks by irregularly distributing key input coordinates. The proposed method provides better user experience and security than existing methods and can be used in smartphones of various sizes and shapes.

Development of Rollable Smartpad for Management of the Sitting Behavior (착좌 행동 관리를 위한 롤러블 스마트패드 개발)

  • Kang, Seongtak;Lee, Jaegeun;Park, Sooji;Shin, Hangsik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.1129-1130
    • /
    • 2017
  • 본 연구에서는 현대인들의 하루 중 많은 시간을 차지하는 착좌 생활을 관리하기 위한 롤러블(rollable) 스마트패드를 개발하였다. 이를 위해 PVDF(polyvinylidene fluoride) 필름을 이용한 압전센서(piezoelectric sensor)를 제작하였으며, 센서에서 데이터를 획득하고 및 햅틱 피드백(haptic feedback)을 주기 위한 측정시스템을 개발하였다. 또한, 스마트폰 어플리케이션을 통해 착좌 자세에 대한 정보를 실시간으로 제공하도록 하였다. 제작된 시스템의 착좌 자세 구분 정확도는 10명의 피험자를 대상으로 평가되었으며, 4가지 자세(상체를 좌, 우, 앞, 뒤로 기울인 앉은 자세)에 대한 실험결과 제작된 시스템은 92.5%의 정확도로 제시한 4가지의 자세를 구분하였다.

Centrifuge modelling of temporary roadway systems subject to rolling type loading

  • Lees, Andrew S.;Richards, David J.
    • Geomechanics and Engineering
    • /
    • v.3 no.1
    • /
    • pp.45-59
    • /
    • 2011
  • Scaled centrifuge modelling techniques were used to study the soil-structure interactions and performance of a jointed rollable aluminium roadway (or trackway) system on soft clay under light truck tyre loads. The measured performance and subsequent analyses highlighted that the articulated connections significantly reduced the overall longitudinal flexural stiffness of the roadway leading to stress concentrations in the soil below the joints under tyred vehicle loadings. This resulted in rapid localised failure of the supporting soil that in turn led to excessive transverse flexure of the roadway and ultimately plastic deformations. It is shown that the performance of rollable roadway systems under tyred vehicle trafficking will be improved by eliminating joint rotation to increase longitudinal stiffness.

Research on Secure Keypads for Mobile Devices with Stretchable Displays (스트레처블 디스플레이가 적용된 모바일 기기의 보안 키패드 연구)

  • Dongmin Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.885-890
    • /
    • 2024
  • This study proposes a secure keypad structure that can adapt to screen changes in mobile devices equipped with stretchable display. For this purpose, we compared and analyzed the authentication methods applied to current rigid form factor smartphones with those applied to rollable and bendable display based smartphones, which are the previous stages of stretchable display. Based on the results of this analysis, we identified potential user convenience and security safety issues that may arise in the form factor structure for smart wallets, multitasking, screen expansion and media viewing, and gaming and entertainment applications where stretchable displays will be applied, then proposed a security keypad structure for these form factors. Our keypad structure provides enhanced user convenience and security compared to the structures applied in the smartphone environment based on the conventional rigid display form factor and rollable, bendable display form factor.

Commercialization of Microencapsulated Electrophoretic Displays

  • McCreary, Michael
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.524-524
    • /
    • 2006
  • For decades, the pursuit of volume commercialization of low-power reflective displays with a paper-like look has been an unfulfilled dream. While steady technical progress was made throughout the late 1990s, there were still no volume products incorporating electronic paper displays (EPD) on the market. Now, microencapsulated electrophoretic display technology, also called electronic ink, has moved into volume production with a frontplane laminate (FPL) display component called E Ink Imaging Film™. This film is coated roll to roll on a flexible plastic substrate and integrated into a display module. Today, all-plastic segmented displays are being shipped as well as displays with electronic ink FPL being driven by glass TFT backplanes. A roadmap to active matrix flexible electrophoretic displays is being enabled by rapid technical progress on flexible TFT backplanes by a variety companies. Each of the approaches to these backplanes and flexible active matrix displays has different advantages for the various market segments being pursued including large format flexible displays for e-news and other reader applications, rollable displays for compact readers, and high resolution small format displays up to 400 ppi that can have fully integrated drive electronics to reduce size and drive down costs. Backplane approaches include Si on plastic, organic transistors on plastic, and Si transistors on flexible stainless steel substrate. Progress is also being made on next generation inks, including more reflective inks with higher contrast ratios. A full color 6 inch, 170 pixel per inch (PPI) active matrix display using a newer generation ink has been developed and this will be described and demonstrated. Large format segmented flexible displays will also be described.

  • PDF

Measurement of Mechanical Properties of Thin Film Materials for Flexible Displays (플렉서블 디스플레이용 박막 소재 물성 평가)

  • Oh, Seung Jin;Ma, Boo Soo;Kim, Hyeong Jun;Yang, Chanhee;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.77-81
    • /
    • 2020
  • Commercialization of flexible OLED displays, such as rollable and foldable displays, has attracted tremendous interest in next-generation display markets. However, during bending deformation, cracking and delamination of thin films in the flexible display panels are the critical bottleneck for the commercialization. Therefore, measuring mechanical properties of the fragile thin films in the flexible display panels is essential to prevent mechanical failures of the devices. In this study, tensile properties of the metal and ceramic nano-thin films were quantitatively measured by using a direct tensile testing method on the water surface. Elastic modulus, tensile strength, and elongation of the sputtered Mo, MoTi thin films, and PECVD deposited SiNx thin films were successfully measured. As a result, the tensile properties were varied depending on the deposition conditions and the film thickness. The measured tensile property values can be applied to stress analysis modeling for mechanically robust flexible displays.