• Title/Summary/Keyword: Roll reduction

Search Result 190, Processing Time 0.03 seconds

Develpment of Heavy Sheet Pile KWSP VL (Sheet pile VL의 profile 개발과 냉각방법의 개선)

  • 김효섭;조경희;김정태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.37-46
    • /
    • 1999
  • Sheet pil VL 제조에 있어서 핵심적인 중요 기술은 압연 중 진행 소재가 좌우 휨이 없이 직진토록하여 치입 상에 문제가 없어야 하는 것이며, 또 하나는 압연 완료후 냉각 중에 있는 제품의 bending량을 최소로 하여 roller 교정기에서 1차 교정으로 교정이 완료되게 하는 것이다. 압연중 소재가 직진토록 하기 위해서 web와 flange 등의 caliber 협상에서 balance가 유지되어야 하므로, web와 flange의 reduction을 1:1 vs 1.0으로 web의 압하가 flange에 비해 10%정도 크게 하였고, 좌우 flange의 reduction이 변화하지 않도록 flange 온도 보존을 위하여 intermediated에서 2 pass를 생략하여 약 40초의 rolling time을 단축시켰고, 이는 7$0^{\circ}C$정도의 온도 drop를 방지하는 효과를 나타내었다. 이로 인한 roll force는 약 15%정도 down 되었다. 논리상으로 A3 변태점 이하에서 web(두꺼운 부분 24.3mm)나 flange(얇은부분 9.5mm)가 동시에 압연이 완료된다면 bending량은 휠씬 줄어든 것이나, 이 경우 roll force 증가에 따른 roll 절손 사고의 위험과 설비 trouble이 우려되기 때문에 web 온도를 약 95$0^{\circ}C$에서 flange 온도를 83.$0^{\circ}C$에서 압연 완료토록 함으로써 설비 안전을 도모하였고, 1차 교정을 위하여 냉각 주수 설비를 설치하여 공냉시켰을 때의 1400mm에서 700mm로 bending량을 감소시킴으로써 이를 가능토록하였다.

  • PDF

A Study on Active SAR Satellite Maneuver Time Reduction through Sequential Rotation (연속회전을 통한 능동 합성개구레이더위성 기동시간 단축 연구)

  • Son, Jun-Won;Park, Young-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.648-656
    • /
    • 2015
  • Active SAR satellite's main maneuver is roll axis maneuver to change SAR antenna direction. In addition, yaw steering is required to minimize the doppler centroid variation. Thus, it is resonable to assign the torque/momentum capacity mostly to roll axis and then yaw axis. In this case, the pitch axis shows low agility performance. However, due to orbit maintenance, large angle maneuver about pitch axis is sometimes required. In this paper, we study the pitch axis maneuver time reduction through sequential rotation about roll and yaw axis. Since these two axes have high agility performance than pitch axis, maneuver time reduction is possible when large angle rotation about pitch axis is required.

Rolling of AZ31 Alloy and Microstructure of Rolled Plates (압연조건에 따른 AZ31 마그네슘합금판재의 변형거동 및 미세조직 변화)

  • Ha, T.K.;Jeong, H.T.;Sung, H.J.;Park, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.63-66
    • /
    • 2006
  • The effect of warm rolling under various conditions on the microstructure and mechanical property was investigated using an AZ31 Mg alloy sheet. Several processing parameters such as initial thickness, thickness reduction by a single pass rolling, rolling temperature, roll speed, and roll temperature were varied to elicit an optimum condition for the warm rolling process of AZ31 Mg alloy. Microstructure and mechanical properties were measured for specimens subjected to rolling experiments of various conditions. Warm rolling of 30% thickness reduction per pass was possible without any side-crack at temperatures as low as $200^{\circ}C$ under the roll speed of 30 m/min. The initial microstructure before rolling was the mixed one consisting of partially recrystallized and cast structures. Grain refinement was found to occur actively during the warm rolling, producing a very fine grain size of 7 mm after 50% reduction in single pass rolling at $200^{\circ}C$. Yield strength of 204MPa, tensile strength of 330MPa and uniform elongation of 32% have been obtained in warm rolled sheets.

  • PDF

Development of the Rudder Roll Control System of a Vessel in Irregular Waves (조타에 의한 선박의 횡요 감소시스템의 개발)

  • Lee Seung-Keon;Lee Gyoung-Woo;Hwang Sung-Jun;Kang Dong-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.839-845
    • /
    • 2005
  • A rudder roll control system is developed and analyzed to control the yawing and rolling motion of ship in irregular waves. The 4-DOF maneuvering equations of motion are derived to carry out the simulation of the motion of a ship and the wave forces are considered as the external forces of a ship in the simulation. The wave forces in the time domain analysis are generated from the frequency transfer function calculated by 3-D source distribution method. The rudder roll control system is developed by linear combination of PD rudder controllers of yawing and rolling motion. Rudder rate speed and Schilling rudder are considered to increase the roll reduction efficiency.

Microstructure and Mechanical Property in Thickness Direction of a Deoxidized Low-Phosphorous Copper Sheet Processed by Two-Pass Differential Speed Rolling (2-pass 이주속압연된 인탈산동판재의 두께방향으로의 미세조직 및 기계적 특성)

  • Lee, Seong-Hee;Jang, Jun-Hyuk;Utsunomiya, Hiroshi
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.392-398
    • /
    • 2013
  • A two-pass differential speed rolling(DSR) was applied to a deoxidized low-phosphorous copper alloy sheet in order to form a homogeneous microstructure. Copper alloy with a thickness of 3 mm was rolled to 75 % reduction by two-pass rolling at $150^{\circ}C$ without lubrication at a differential speed ratio of 2.0:1. In order to introduce uniform shear strain into the copper alloy sheet, the second rolling was performed after turning the sample by $180^{\circ}$ on the transverse direction axis. Conventional rolling(CR), in which the rotating speeds of the upper roll and lower roll are identical to each other, was also performed by two-pass rolling under a total rolling reduction of 75 %, for comparison. The shear strain introduced by the conventional rolling showed positive values at positions of the upper roll side and negative values at positions of the lower roll side. However, samples processed by the DSR showed zero or positive values at all positions. {100}//ND texture was primarily developed near the surface and center of thickness for the CR, while {110}//ND texture was primarily developed for the DSR. The difference in misorientation distribution of grain boundary between the upper roll side surface and center regions was very small in the CR, while it was large in the DSR. The grain size was smallest in the upper roll side region for both the CR and the DSR. The hardness showed homogeneous distribution in the thickness direction in both CR and DSR. The average hardness was larger in CR than in DSR.

Reduction of the Roll-Over of the Sector Tooth for Achieving Improved Recliner Locking Performance (리클라이너 결합 성능 향상을 위한 섹터투스의 롤오버 저감 방법)

  • Lee, Sang-Hoon;Choi, Hong-Seok;Chang, Myung-Jin;Kim, Dong-Su;Bae, Jae-Ho;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1623-1630
    • /
    • 2010
  • In this study, effective forming methods for reducing the roll-over of a sector tooth, which is a main component of an automotive seat recliner, are proposed. Due to the large amount of roll-over, accurate contact between the inner gear of a sector tooth and the outer gear of a pawl tooth cannot be normally achieved; thus sensitivity and safety for the passengers decrease. To overcome the aforementioned drawback, we investigated the effect of flowcontrol forming methods involving local embossing die, coining punch, and VIC (Variable Inverse Clearance) on the roll-over depth by FE-analysis and an experiment. The results of a fine-blanking experiment for verifying the proposed methods showed that VIC type is decidedly superior from the aspects of reduction of roll-over and tool strength of the sector tooth.

A Study on Developing the Rudder Roll Control System of a Vessel in Irregular Waves (조타에 의한 선박의 횡요 감소시스템의 개발에 관한 연구)

  • Lee Seung-Keon;Hwang Sung- Jun;Kang Dong-Hoon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.55-61
    • /
    • 2005
  • A rudder roll control system is developed and analyzed to control yawing and rolling motion of ship in irregular waves. The 4-DOF maneuvering equations of motion are derived to carry out the simulation of the motion of a ship and the wave forces are considered as the external forces of a ship in the simulation. The wave forces in the time domain analysis are generated from the frequency transfer function calculated by 3-D source distribution method. The rudder roll control system is developed by linear combination of PD rudder controllers of yawing and rolling motion Rudder rate speed and Schilling rudder are considered to increase roll reduction efficiency.

  • PDF

A Study on the Durability of a Wedge for Transportation of Rolled Steel Plates Using FEM (유한요소법을 이용한 권취강판 적재운송용 Wedge의 내구성에 관한 연구)

  • Kwac, Lee-Ku;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.328-335
    • /
    • 2009
  • In order to 1ransport the steel roll coil effectively and safely to the destination, the stability of the steel roll coil which induced the minimum movements during the 1ransportation was s1rongly required. The basic 1ransportation equipment for the steel roll coil such as the wedge is made of 100% imported wood known as the apitong. However, the material characteristic such as the rigidity has caused permanent damages to the steel roll coil and the damaged steel roll coils were not easily restorable. Thus it was unsuitable for other purposes. The introduction of new materials to manufacturing wedges which would have a good recovery performance and thus enable the wedge prevention or reduction to the steel roll coil or any other products during the 1ransportation is needed. Due to the fact that recovering damage of the coil is almost impossible, we have to find the new type of wedge that can substitute the apitong wedge. Therefore, we are going to develop a wedge that does not damage rolled steel coil and has better recovery and softness than existing apitong wedge.

  • PDF

A FE-based Model for Predicting Roll Force in a Vertical Rolling Process (수직압연에 대한 압하력 예측 모델)

  • Yun, D.J.;Kim, Y.K.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.548-554
    • /
    • 2011
  • A Finite Element (FE)-based model is proposed for predicting the roll force in an edger. The model is developed on the basis of the hypothetical mode of rolling and the least-squares regression analysis from the result of the FE approach. This model reflects the effect of process variables affected by the roll force, and has three dimensionless parameters, I.e., shape factor, reduction ratio and width-to-thickness ratio. The model prediction compared satisfactorily with experiment observations.

Predictive Control for a Fin Stabilizer

  • Yoon, Hyeon-Kyu;Lee, Gyeong-Joong;Fang, Tae-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.597-603
    • /
    • 2007
  • A predictive controller can solve a control problem related to a disturbance-dominant system such as roll stabilization of a ship in waves. In this paper, a predictive controller is developed for a fin stabilizer. Future wave-induced moment is modeled simply using two typical regular wave components for which six parameters are identified by the recursive Fourier transform and the least squares method using the past time series of the roll motion. After predicting the future wave-induced moment, optimal control theory is applied to discover the most effective command fin angle that will stabilize the roll motion. In the results, wave prediction performance is investigated, and the effectiveness of the predictive controller is compared to a conventional PD controller.