• Title/Summary/Keyword: Roll damping

Search Result 104, Processing Time 0.025 seconds

A Study on the Adaptive Roll Control Scheme for the Top Attack Smart Projectile (상부공격 지능탄의 회전각 적응제어 기법 연구)

  • 홍종태;정수경;최상경
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • An Adaptive Positive Position Feedback method is presented for controlling the roll of the supersonic smart projectile. The proposed strategy combines the attractive attributes of Positive Position Feedback(PPF) of Goh and Caughey, and Lyapunov stability theorem. The parameters of Adaptive-PFF controller are adjusted in an adaptive mauler in order to follow the performance of an optimal reference model. In this way, optimal damping and zero steady-state errors can be achieved even in the presence of uncertain or changing plant parameters. The performance obtained with the Adaptive-PPF algorithm is compared with conventional PPF control algorithm. The results obtained emphasize the potential of Adaptive-PPF algorithm as an efficient means for controlling plants such as supersonic flight systems with uncertainties in real time.

  • PDF

Study for the Safety of Ships' Nonlinear Rolling Motion in Beam Seas

  • Long, Zhan-Jun;Lee, Seung-Keon;Jeong, Jae-Hun;Lee, Sung-Jong
    • Journal of Navigation and Port Research
    • /
    • v.33 no.9
    • /
    • pp.629-634
    • /
    • 2009
  • Vessels stability problems need to resolve the nonlinear mathematical models of rolling motion. For nonlinear systems subjected to random excitations, there are very few special cases can obtain the exact solutions. In this paper, the specific differential equations of rolling motion for intact ship considering the restoring and damping moment have researched firstly. Then the partial stochastic linearization method is applied to study the response statistics of nonlinear ship rolling motion in beam seas. The ship rolling nonlinear stochastic differential equation is then solved approximately by keeping the equivalent damping coefficient as a parameter and nonlinear response of the ship is determined in the frequency domain by a linear analysis method finally.

Study for the Nonlinear Rolling Motion of Ships in Beam Seas

  • Long, Zhan-Jun;Lee, Seung-Keon;Jeong, Jae-Hun;Lee, Sung-Jong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.239-240
    • /
    • 2009
  • Vessels stability problems need to resolve the nonlinear mathematical models of rolling motion. For nonlinear systems subjected to random excitations, there are very few special cases can obtain the exact solutions. In this paper, the specific differential equations of rolling motion for intact ship considering the restoring and damping moment have researched firstly. Then the partial stochastic linearization method is applied to study the response statistics of nonlinear ship rolling motion in beam seas. The ship rolling nonlinear stochastic differential equation is then solved approximately by keeping the equivalent damping coefficient as a parameter and nonlinear response of the ship is determined in the frequency domain by a linear analysis method finally.

  • PDF

Analysis of How the Bonding Force between Two Assemblies Affects the Flight Stability of a High-speed Rotating Projectile (이종결합 고속회전 발사 탄의 비행 안정성에 결합력이 미치는 영향성 분석)

  • Lee, Sang-bong;Choi, Nak-sun;Lee, Jong-hyeon;Kim, Sang-min;Kang, Byung-duk
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.255-268
    • /
    • 2021
  • Purpose: We sought to understand why a high-speed rotating projectile featuring a fuze-and-body assembly sometimes exhibited airburst, and we intended to improve the flight stability by eliminating airburst. Methods: We performed characteristic factor analysis, structural mechanics modeling, and dynamic modeling and simulation; and we scheduled firing tests to discover the cause of airburst. We used a step-by-step procedure to analyze the reliability function for selecting the bonding force standard that prevents airburst. Results: The 00MM high-speed rotating projectile features a fuze bonded to a body assembly; the bonding sometimes can break on firing. The resulting contact force, vibration and roll damping during flight generated yaw. Flight became unstable; fuze operation triggered an airburst. Our reliability test improved the bonding force standard (the force was increased). When the bonding force was at least the minimum required, a firing test revealed that airburst/flight instability disappeared. Conclusion: Analysis and identification of the causes of flight instability and airburst render military training safer and enhance combat power. Ammunition must perform as designed. Our method can be used to set standards that improve the performances of similar types of ammunition.

A Study on Viscous Damping System of a Ship with Anti-Rolling Pendulum (안티롤링 진자를 장치한 선박의 점성감쇠계 해석에 대한 연구)

  • Park, Sok-Chu;Jang, Kwang-Ho;Yi, Geum-Joo
    • Journal of Navigation and Port Research
    • /
    • v.41 no.6
    • /
    • pp.365-372
    • /
    • 2017
  • The rolling motion of a floating body makes crews and passengers exhausted and/or applies forces to the structure to cause damage; it might even upset the body. Therefore, almost all ships are equipped with bilge keels for anti-rolling; in special cases, an anti-rolling tank(ART) or fin stabilizer or gyroscope could be installed. But an ART requires a large capacity to install it, and a fin stabilizer and gyroscope need great costs to install and also many expenses to operate. The authors suggest the use of an anti-rolling pendulum(ARP), and they showed that the ARP is effective to reduce rolling by experiments and via a Runge-Kutta analysis. This paper introduces the linearized 2 degrees of freedom with a viscous damping system for a ship equipped with ARP; it also shows the validation of the linearized analysis for the ship's roll motion. The paper proposes an optimum ARP on the basis of the justified model. The case of the 7.7kg model with ship 20g ARP of a mass ratio of 0.26%, is the most effective for reducing roll motion. The paper shows the ARPs with various mass ratios are effective for reducing the roll motion of a ship by free decaying roll experiments.

Measurement of Dynamic Stability Derivatives of Tailless Lamda-shape UAV using Forced Oscillation Method (강제진동 기법을 이용한 무미익 비행체의 동안정 미계수 측정)

  • Yang, Kwangjin;Chung, Hyoungseog;Cho, Donghyun;An, Eunhye;Ko, Joonsoo;Hong, JinSung;Kim, Yongduk;Lee, MyungSup;Hur, Gi-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.552-561
    • /
    • 2016
  • In this experimental study, the dynamic stability derivatives of a tailless lambda-shape UAV are estimated from time history data of aerodynamic moments measured from the internal balance while the test model is forced to oscillate at given frequencies and amplitudes. A 3-axis forced oscillation apparatus is designed to induce decoupled roll, yaw, pitch oscillations respectively. The results show that the roll damping derivatives remain stable at the entire range of angle of attack tested, whereas the pitch damping derivatives become unstable beyond $15^{\circ}$ angle of attack. The amplitude and frequency have little impact on roll damping derivatives while the smaller amplitude and frequency of oscillation improves the pitch stability. The yaw damping derivative values are fairly small as expected for a tailless configuration. The results indicate that the proposed methodology and test apparatus area valid for estimating the dynamic stability derivatives of a tailless UAV.

A RANS-based Simulation for the Prediction of Hydrodynamic Rolling Moments around Rectangular Cylinders with Free Surface (자유수면을 포함한 사각기둥의 횡동요 유체동역학 수치해석)

  • Kim, Su-Whan;Kim, Kwang-Soo;Park, Il-Ryong;Van, Suak-Ho;Kim, Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.667-674
    • /
    • 2006
  • Accurate prediction of ship dynamics, particularly roll motion, is very important in ship safety. In the past, empirical or vortex based methods were commonly used for the hydrodynamic roll damping predictions but they could not be applied to practical ship roll motion cause of limitations about geometries ad design conditions. Recently RANS-based techniques are developed for the practical ship motion analysis. In this study, RANS based roil analysis about a rectangular cylinder with WAVIS developed by MOERI/KORDI are performed and compared with the experimental data and other RANS results.

An analytic study on the hull characteristics of ship accidents at low capsizing speeds (저속으로 전복되는 선박사고의 선체 특성에 대한 해석적 연구)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.235-239
    • /
    • 2016
  • The capsizing speed of an unstable vessel with a lost restoring moment can be understood as a unique response to an accident situation, and is naturally affected by such parameters as moment of inertia, metacentric height, and transverse damping coefficient of the hull in the case of free roll motion. Additionally, it is supposed that the analysis of capsize accidents can be further simplified when a vessel's leaning velocity is shown to be quite low. Therefore, capsize accidents with low leaning speeds are desirably categorized in view of rescuing strategies, as opposed to fast capsize accidents, since the attitude of the declining hull can be properly estimated, which allows rescuers to have more time for helping accident cases. This study focuses on deriving some analytical equations based on the roll decay ratio parameter, which describes how a hull under a low-speed capsize is related to the situational hull characteristics. The suggested equations are applied to a particular ship to disclose the analytical responses from the model ship. It was confirmed that the results show the general characteristics of slow capsizing ships.

Development of an Evaluation Procedure for Seakeeping Performance of High-speed Planing Hull using Hybrid Method (하이브리드 방법을 사용한 고속 활주정의 내항성능평가 절차 개발)

  • Kim, YoungRong;Park, Jun-Bum;Park, Jong-Chun;Park, Seul-Ki;Lee, Won-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.200-210
    • /
    • 2019
  • High-speed planing craft is generally smaller than commercial vessels, for which not only the roll motion but also the pitch and heave motions are relatively large during operation However, if seakeeping performance of high-speed planing craft is evaluated by assessment methods of commercial vessels considering roll damping only, it would get unreasonable results due to excessive magnitudes of motion. This research aims at developing a procedure to evaluate seakeeping performance of high-speed planing craft reasonably well by considering responses of roll, heave and pitch motions. In addition, we tried to combine advantages of the potential flow method and CFD in this procedure, a so-called hybrid method, which uses the 3D panel method for the analysis of seakeeping performance, and tunes the damping coefficient using CFD analysis at a specific frequency. Finally, we evaluated seakeeping performance of coastal rescue boat in operation by applying the proposed procedure, and analyzed the results referring to the seakeeping criteria.

A General Formula for Calculating the Value of Transverse Moment of Inertia by Observing the Roll Motion of Ships (횡요상태 관측에 의한 선체 횡관성모멘트 값의 도출을 위한 일반식)

  • Choi, Soon-Man
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.538-542
    • /
    • 2015
  • The transverse moment of inertia is an indispensable factor in analyzing the roll motion characteristics of ships and the calculating method needs to be based on the more reasonable theories when deciding the value as the results and reliability of analysis could be much affected by the correctness. However, the mass distribution and shape of hulls are quite complicated and give much difficulties in case of calculating the value directly from the ship design data, furthermore even acquiring the detailed design data for calculation is almost impossible. Therefore some simpler ways are practically adopted in the assumption that the gyradius of roll moment can be decided by a given ratio and hull width. It is well known that the responses of the free roll decay are varied according to the value of roll moment in view of roll period and amplitude decay ratio, so that the general formula to get the moment value can be derived also from the observation of roll decay responses. This study presents how the roll period and decay ratio are interrelated each other from the roll motion characteristics with suggesting a general formula to be able to calculate roll moment from it. Finally, the obtained general formula has been applied to a ship data to check the resultant characteristics through analyzing graphs and showed that the roll moment becomes more accurate when rolling period and decay ratio are considered together in calculation.