• Title/Summary/Keyword: Roll Force

Search Result 303, Processing Time 0.027 seconds

The Study of Aerodynamic Characteristics of Jet-Vane Affected by the Shroud (Shroud의 영향에 따른 제트 베인의 공기역학적 특성 연구)

  • Park, Soon-Jong;Park, Jong-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.34-41
    • /
    • 2012
  • Thrust vector control system is a control device which is mounted on the exit of the nozzle to generate pitch, yaw and roll directional force by deflecting flow direction of the supersonic jet from the nozzle. Thermal and aerodynamic loads are acting on the surface of jet vane when it is exposed to the jet flow. Axial thrust loss and side thrust loss are affected by shock patterns and interactions between jet-vanes which varies with jet-vane geometry and turning angle. In this research, the performance estimation using the numerical simulation analysis of the nozzle is given and the investigation of the flow visualization and aerodynamic performance with the enforced power to the vane is taken.

Predicting Sabot-Trajectory of Shipboard Projectile Including Ship Motion & Generating Trajectory-range Function for Interference Analysis with Structure of Naval Ship (함정 운동이 포함된 발사체 지지대 궤적 및 궤적 범위 함수 산출을 통한 함정과의 간섭 예측)

  • Park, Yunho;Woo, Hokil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.572-582
    • /
    • 2018
  • In this paper, we have calculated a formular for sabot-trajectory of shipboard projectile including ship motion and generated trajectory-range function for analysing interference with structure of naval ship. We make formula to approximate the ship motion data of naval ship using optimization technique. Through this formula, we calculate the velocities and accelerations of sabot caused by ship motion(surge, sway, heave, roll, pitch, yaw) and then, we produce the formula about the trajectory of sabot including effects of ship motion in addition to previous study which had considered the effects of the pressure of flume, friction force, etc. To investigate interference with ship structures, we make the trajectory-range functions and then extract the nearest or farthest trajectory to ship structure. Through these data, we can conform whether the interference is happened or not.

A NUMERICAL STUDY ON THE CHARACTERISTICS OF ASYMMETRIC VORTICES AND SIDE FORCES ON SLENDER BODIES AT HIGH ANGLES OF ATTACK (세장형 물체 주위 고앙각 유동의 비대칭 와류 및 측력 특성에 관한 수치적 연구)

  • Jung S.K.;Jung J.H.;Myong R.S.;Cho T.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.22-27
    • /
    • 2006
  • Flow around a guided missile in high maneuver, i.e. at a high angle of attack, shows complex phenomena. It is well known that even in geometrically symmetric conditions the flow around a missile at high angles of attack can generate unexpected large side forces and yaw moments due to asymmetric vortices. In this paper, a CFD code (FLUENT) based on the Navier-Stokes equations was used for the numerical analysis to find a suitable numerical mechanism for generation of asymmetric vortices. It is shown that a numerical technique of applying different surface roughness to a specific area of the missile nose surface gives the best fit in comparison with the experimental results. In addition, a numerical investigation of variations of side forces and pressure distributions with angle of attack and roll angle was conducted for the purpose of identifying the source of vortex asymmetries.

Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Multibody Dynamics Approach

  • Kim, Joong-Kwan;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.152-161
    • /
    • 2013
  • This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables defined in a wing kinematics function. The aerodynamics from complex wing flapping motions is estimated by a blade element approach, including translational and rotational force coefficients derived from relevant experimental studies. Control characteristics of flight dynamics with respect to the changes of three angular degrees of freedom (stroke positional, feathering, and deviation angle) of the wing kinematics are investigated. Results show that the symmetric (asymmetric) wing kinematics change of each wing only affects the longitudinal (lateral) flight forces and moments, which implies that the longitudinal and lateral flight controls are decoupled. However, there are coupling effects within each plane of motion. In the longitudinal plane, pitch and forward/backward motion controls are coupled; in the lateral plane, roll and side-translation motion controls are coupled.

Three-dimensional numerical simulation for the prediction of product shape in sheet casting process

  • Chae, Kyung-Sun;Lee, Mi-Hye;Lee, Seong-Jae;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.2
    • /
    • pp.107-117
    • /
    • 2000
  • Prediction of the product shape in sheet casting process is performed from the numerical simulation. A three-dimensional finite element method is used to investigate the flow behavior and to examine the effects of processing conditions on the sheet produced. Effects of inertia, gravity, surface tension and non-Newtonian viscosity on the thickness profile of the sheet are considered since the edge bead and the flow patterns in the chill roll region have great influence on the quality of the products. In the numerical simulation with free surface flows, the spine method is adopted to update the free surface, and the force-free boundary condition is imposed along the take-up plane to avoid severe singularity problems existing at the take-up plane. From the numerical results of steady isothermal flows of a generalized Newtonian fluid, it is shown that the draw ratio plays a major role in predicting the shape of the final sheet produced and the surface tension has considerable effect on the bead thickness ratio and the bead width fraction, while shear-thinning and/or tension-thickening viscosity affect the degree of neck-in.

  • PDF

Implementation of Hovering AUV and Its Attitude Control Using PID Controller (PID 제어기를 이용한 호버링 AUV의 구현과 자세 제어)

  • Kim, Min-Ji;Baek, Woon-Kyung;Ha, Kyoung-Nam;Joo, Moon-Gab
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.221-226
    • /
    • 2016
  • An attitude controller for a 6-DOF hovering autonomous underwater vehicle (HAUV) is implemented. We add a vertical thruster, an underwater camera, a wireless communication device, and a DVL to the HAUV that was developed a year ago. The HAUV is composed of 5 thrusters, 2 servo-motors, and 4 apparatus parts. Two rotating thrusters control the surge, heave, and roll of the vehicle. The vertical thruster controls the pitch, and two horizontal thrusters control the sway and yaw of the vehicle. The HAUV’s movement in each direction is controlled by 6 PID controllers. Each PID controller controls the propulsive force and angle of a thruster. In a horizontal and vertical movement experiment, we showed the feasibility of the proposed controller by maintaining a given depth and heading angle of the HAUV.

Modeling and Simulation of a Ship with Anti-Rolling Devices in Waves (자세제어장비를 장착한 선박의 파랑중 운동 모델링 및 시뮬레이션)

  • 윤현규;이경중;이창민
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.285-290
    • /
    • 2004
  • Wave exciting force and moment generate the motions of a ship in waves. Since ship motion exerts the negative influences on a crew's operability, the safety of cargos, passenger's comfort, etc, the anti-rolling devices may be required to reduce such motion. In this paper, the dynamics of the anti-rolling devices such as passive and active moving weight stabilizer and anti-rolling tank, and fin stabilizer are mathematically modeled. While the effect of the motion of the anti-rolling device on a ship was taken into consideration in roll mode only in the past, the 6 DOF coupled equations of motion between a ship and the anti-rolling devices are constituted. Finally the motion of a ship with anti-rolling devices in waves is simulated through the developed simulation program.

  • PDF

Colonoscopy Training Simulator

  • Yi, S.Y.;Woo, H.S.;Kwon, J.Y.;Joo, J.K.;Lee, D.Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.57-61
    • /
    • 2005
  • This paper presents a new colonoscopy training simulator that includes a specialized haptic device and graphics algorithms to transfer haptic sensation through a long and flexible tube, and manage large number of polygons. The developed haptic device makes the colonoscope tube move along the two guiding rods in the translational direction. The torque of the roll motion is transferred by a timing belt and pulleys. A special guide is developed, which allows the force and torque from the motors to be transmitted to the user without loss. The haptic device is evaluated by physicians. One of the important skills of the colonoscopy, jiggling is incorporated for the first time by the developed sensor mechanism using photo-sensors. A colonoscope handle that shares the look, feel, and functions with the actual colonoscope, is developed with the necessary electronics inside. The number of polygons is reduced by an edge-collapse algorithm for real-time simulation. The algorithms to import CT data, to segment the colon image, to extract centerline of the colon, and to construct the colon surface, are integrated into a Colon Modeling Kit system that performs all these processes in real-time.

  • PDF

A Study on Motion of a Flooding and Un-steerable Vessel in Stormy Weather Condition (침수된 조타불능선의 악천후에서의 거동연구)

  • KIM, Sung-Soo;PARK, Byung-Soo;KANG, Dong-Hoon;LEE, Jong-Hyun;CHO, Hyun-Kuk
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.1
    • /
    • pp.286-296
    • /
    • 2017
  • This paper conducted a simulation to research the motion of a vessel, which had the flooding accident in the Bering Sea in 2014, thereby being flooded and un-steerable. As the wind condition was very harsh, the vessel was modeled as 3D including large upper deck structures and the Fujiwara's method was used for an estimation of the effect of wind forces and moments acting on ship. In the case of wave influence, AQWA-Drift that enables considering the effects of drift force and AQWA-Naut that enables considering the effects of green water were mainly used. Basically, loading and flooding condition were equal to the accident condition but half-drained condition was also used to consider drain ability. Furthermore, both 6 DOF and 5 DOF option that Yaw motion is fixed, were utilized to compare the steerable and un-steerable condition. As a result, the author found out that what roll angle triggers green water, how often it happens, and how the vessel moves on the stormy weather condition.

Design and Fabrication of Single-person Neighborhood Electric Vehicle with Streamlined Car Body (유선형 차체가 적용된 1인용 저속 전기 자동차의 설계 및 제작)

  • Na, Yeong-min;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.55-63
    • /
    • 2018
  • In recent years, with the growing interest in electric vehicles, the development of a Neighborhood Electronic Vehicle (NEV) made for urban driving is accelerating. Existing NEVs are set to ~0.3 - 0.35 with more emphasis on performance rather than minimizing air resistance. In this paper, a NEV with a streamlined car body is proposed. The shape of dolphins and sharks was applied to the car body to minimize the air resistance generated when driving. Also, the performance of the vehicle was estimated by calculating the traction force and the roll couple, etc. To check the drag coefficient of the car body, finite element analysis software (COMSOL Multiphysics) was used. The frame of the vehicle is divided into the forward and the rear parts. Carbon pipe is used for the frame by MIG welding. The car body of the vehicle was fabricated by forming carbon fiber. This study confirmed the general possibility of using NEVs through driving experiments.