• Title/Summary/Keyword: Roll Estimation

Search Result 114, Processing Time 0.022 seconds

Study on the Estimation of Measurement Uncertainty in MOI Measurement (관성모멘트 측정에서의 불확도 추정기법 연구)

  • Kim, Kwang-Ro;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.797-802
    • /
    • 2013
  • In this paper, using the mass/CG measurement equipment and the MOI measurement equipment developed in-house, Pitch MOI and Roll MOI of test specimen were measured and measurement uncertainties on MOI were studied. The possible factors of the measurement uncertainty that could affect accuracy of MOI measurement were mass, spring, frequency, and length measurement-related elements. The each combined standard uncertainty of pitch MOI and roll MOI was estimated from the uncertainties of the above various factors.

Lane Detection-based Camera Pose Estimation (차선검출 기반 카메라 포즈 추정)

  • Jung, Ho Gi;Suhr, Jae Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.463-470
    • /
    • 2015
  • When a camera installed on a vehicle is used, estimation of the camera pose including tilt, roll, and pan angle with respect to the world coordinate system is important to associate camera coordinates with world coordinates. Previous approaches using huge calibration patterns have the disadvantage that the calibration patterns are costly to make and install. And, previous approaches exploiting multiple vanishing points detected in a single image are not suitable for automotive applications as a scene where multiple vanishing points can be captured by a front camera is hard to find in our daily environment. This paper proposes a camera pose estimation method. It collects multiple images of lane markings while changing the horizontal angle with respect to the markings. One vanishing point, the cross point of the left and right lane marking, is detected in each image, and vanishing line is estimated based on the detected vanishing points. Finally, camera pose is estimated from the vanishing line. The proposed method is based on the fact that planar motion does not change the vanishing line of the plane and the normal vector of the plane can be estimated by the vanishing line. Experiments with large and small tilt and roll angle show that the proposed method outputs accurate estimation results respectively. It is verified by checking the lane markings are up right in the bird's eye view image when the pan angle is compensated.

Statistical Analysis for Thickness and Surface Roughness of Printed Pattern in Roll-to-Roll Printed Electronics System (롤투롤 인쇄전자 시스템에서 인쇄패턴의 두께와 표면조도에 관한 통계적 분석)

  • Lee, Chang Woo;Kim, Nam Seok;Kim, Chang Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.287-294
    • /
    • 2013
  • The roll-to-roll (R2R) printed electronics system is one of the most promising technologies for the printed electronics industry because of several advantages in terms of productivity and cost. In the R2R printed electronics system, the characteristics of the printed patterns are an important issue that determines the functional quality of the printed matter. This study analyzed how several main factors may affect the characteristics of printed patterns, especially the thickness and surface roughness. The statistical model for estimation of the printed pattern was developed as a function of the main factors using the design of experiment (DOE) methodology. Based on the statistical analysis results, the R2R printed electronics system can be designed to control the characteristics of printed patterns.

An Efficient Estimation Method of Line-of-Sight Rate in High Maneuvering BTT Missiles (고기동 BTT미사일을 위한 효과적인 시선변화율 추정 방법)

  • Song, Eun-Han;Kwon, Jeung-Hun;Ha, In-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.201-203
    • /
    • 2006
  • This paper describes a new LOS(Line-of-Sight) estimator for BTT missiles. The dynamic models of LOS rate and a seeker are derived. Based on these dynamic models, we design a nonlinear estimator, which takes into account roll motion of BTT missiles and sensor noises. Simulation results show that the LOS rate estimates of the proposed estimator are more accurate than those of the conventional estimator.

  • PDF

Attitude Estimation of Agricultural Unmanned Helicopters using Inertial Measurement Sensors (관성센서를 이용한 농용 무인 헬리콥터의 자세 추정)

  • Bae, Yeonghwan;Oh, Minseok;Koo, Young Mo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.159-163
    • /
    • 2014
  • Agricultural unmanned helicopters have become a new paradigm for aerial application. Yet, such agricultural helicopters require easy and affordable attitude control systems. Therefore, this study presents an affordable attitude measurement system using a DCM (direction cosine matrix) algorithm that would be applied to agricultural unmanned helicopters. An IMU using a low-cost MEMS and an algorithm to estimate the attitude of the helicopter were applied in a gimbals structure to evaluate the accuracy of the attitude measurements. The estimation errors in the attitude were determined in comparison with the true angles determined by absolute position encoders. The DCM algorithm and sensors showed an accuracy of about 1.1% for the roll and pitch angle estimation. However, the accuracy of the yaw angle estimation at 3.7% was relatively larger. Such errors may be due to the magnetic field of the stepping motor and encoder system. Notwithstanding, since the intrinsic behavior of the agricultural helicopter remains steady, the determination of attitude would be reliable and practical.

Improvement of Rolling Force Estimation by Modificaiton Function for Hot Steel Strip Rolling Process (보정함수를 이용한 강판의 열간 압연하중 예측 정도향상)

  • 문영훈;이경종;이필종;이준정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1193-1201
    • /
    • 1993
  • A new deformation resistance model for hot steel strip rolling process was formulated to improve the accuracy of roll force estimation. To improve the existing deformation resistance model more precisely, a modification function was introduced in this study. For the modification function, several factors considering material and operational conditions have been investigated and the optimal modification function was determined under the principle of minimum variability. The newly formulated modification function was applied to the deformation resistance model for ultra-low carbon steel and showed improved accuracy with about 30% decrease in terms of standard deviation of predicted roll force values against measured ones.

GPS/INS Integrated Navigation Systems Design for Spinning Smart Munitions (회전하는 지능 포탄의 GPS/INS 통합 항법 시스템 설계)

  • Kim, Jeong-Won;Kang, Hee-Won;Jeong, Ho-Cheol;Hwang, Dong-Hwan;Lee, Sang-Jeong;Lee, Tae-Gyoo;Song, Ki-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.615-621
    • /
    • 2009
  • Since GPS receivers and INS algorithms do not work properly in the spinning vehicles due to change of the GPS signal and excess of the measurement limitation of the gyroscope, conventional GPS/INS integrated navigation systems do not provide accurate navigation outputs. This paper proposes a design method for GPS/INS integrated navigation systems of spinning vehicles. A special GPS receiver with a signal tracking loop for changed GPS signal caused by spinning and an INS with a roll estimation method are configured and the conventional integration filter is combined. The proposed method was verified through comparison of the navigation results. The result of the proposed method for the spinning vehicle was similar to that of the conventional navigation system without spinning.

A Study on the Simulation Model Verification for Performance Estimation of Torsion Beam Axle (토션빔액슬 성능 평가를 위한 해석 모델 검증에 관한 연구)

  • Choi, Sung-Jin;Park, Jung-Won;Jeon, Kwang-Ki;Lee, Dong-Jae;Choi, Gyoo-Jae;Park, Tae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.107-113
    • /
    • 2006
  • The torsion beam axle type is widely used in the rear suspension for small passenger cars due to low cost, good performance, etc. To develop the torsion beam axle, it is necessary to estimate the characteristics of rear suspension from the design process. The characteristics estimation of the torsion beam axle is performed using FEM, dynamic simulation and is verified the real test. In this study, the natural frequency and roll stiffness of the torsion beam axle were measured by FEM, and the reliability of the FE model was evaluated according to the comparison of test data. This study presents a unique method for the finite element modeling and analysis of the torsion beam axle. The results of the FEA were verified using test data.

Adaptive Sliding Mode Control based on Feedback Linearization for Quadrotor with Ground Effect

  • Kim, Young-Min;Baek, Woon-Bo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2018
  • This paper introduces feedback linearization (FL) based adaptive sliding mode control (ASMC) effective against ground effects of the quadrotor UAV. The proposed control has the capability of estimation and effective rejection of those effects by adaptive mechanism, which resulting stable attitude and positioning of the quadrotor. As output variables of quadrotor, x-y-z position and yaw angle are chosen. Dynamic extension of the quadrotor dynamics is obtained for terms of roll and pitch control input to be appeared explicitly in x-y-z dynamics, and then linear feedback control including a ground effect is designed. A sliding mode control (SMC) is designed with a class of FL including higher derivative terms, sliding surfaces for which is designed as a class of integral type of resulting closed loop dynamics. The asymptotic stability of the overall system was assured, based on Lyapunov stability methods. It was evaluated through some simulation that attitude control capability is stable under excessive estimation error for unknown ground effect and initial attitude of roll, pitch, and yaw angle of $30^{\circ}$ in all. Effectiveness of the proposed method was shown for quadrotor system with ground effects.

Change in Turning Ability According to the Side Fin Angle of a Ship Based on a Mathematical Model

  • Lee, WangGook;Kim, Sang-Hyun;Jung, DooJin;Kwon, Sooyeon
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.91-100
    • /
    • 2022
  • In general, the effect of roll motion is not considered in the study on maneuverability in calm water. However, for high-speed twin-screw ships such as the DTMB 5415, the coupling effects of roll and other motions should be considered. Therefore, in this study, the estimation of maneuverability using a 4-degree-of-freedom (DOF; surge, sway, roll, yaw) maneuvering mathematical group (MMG) model was conducted for the DTMB 5415, to improve the estimation accuracy of its maneuverability. Furthermore, a study on the change in turning performance according to the fin angle was conducted. To accurately calculate the lift and drag forces generated by the fins, it is necessary to consider the three-dimensional shape of the wing, submerged depth, and effect of interference with the hull. First, a maneuvering simulation model was developed based on the 4-DOF MMG mathematical model, and the lift force and moment generated by the side fins were considered as external force terms. By employing the CFD model, the lift and drag forces generated from the side fins during ship operation were calculated, and the results were adopted as the external force terms of the 4-DOF MMG mathematical model. A 35° turning simulation was conducted by altering the ship's speed and the angle of the side fins. Accordingly, it was confirmed that the MMG simulation model constructed with the lift force of the fins calculated through CFD can sufficiently estimate maneuverability. It was confirmed that the heel angle changes according to the fin angle during steady turning, and the turning performance changes accordingly. In addition, it was verified that the turning performance could be improved by increasing the heel angle in the outward turning direction using the side fin, and that the sway speed of the ship during turning can affect the turning performance. Hence, it is considered necessary to study the effect of the sway speed on the turning performance of a ship during turning.