• Title/Summary/Keyword: Roll Convection

Search Result 12, Processing Time 0.035 seconds

3-D Numerical Analysis on a low Reynolds Number Mixed Convection in a Horizontal Rectangular Channel (수평 사각채널 내 저 레놀즈수 혼합대류 유동의 3차원 수치해석)

  • Piao, Ri-Long;Bae, Dae-Seok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.210-215
    • /
    • 2005
  • A three-dimensional numerical simulation is performed to investigate on a low Reynolds number mixed convection in a horizontal rectangular channel with the upper part cooled and the lower part heated uniformly. The three-dimensional governing equations are solved using a finite volume method. For convective term, the central differencing scheme is used and for the pressure correction, the PISO algorithm is used. Solutions are obtained for A=4, Pr=0.72, 10, 909, the Reynolds number ranging from $2.1{\times}10^{-2}$ to $1.2{\times}10^{-1}$, the Rayleigh number is $3.5{\times}10^4$. It is found that vortex roll structures of mixed convection in horizontal rectangular channel can be classified into three roll structures which affected by Prandtl number and Reynolds number.

  • PDF

Three-Dimensional Numerical Study on the Vortex Flow in a Horizontal Channels with High Viscous Fluid(2) (수평채널 내 고 점성유체의 볼텍스 유동에 관한 3차원 수치해석(2))

  • Piao, Ri-Long;Kim, Jeong-Soo;Bae, Dae-Seok
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.36-42
    • /
    • 2015
  • TMixed convective flow in a bottom heated and top cooled rectangular channel can be significantly affected by the channel aspect ratio, Prandtl number, Reynolds number, Rayleigh number and angle of inclination. In such a mixed convection, the flow pattern plays an important role in various technological processes. In this study, a numerical investigation is carried out to explore mixed convection in a three-dimensional rectangular channel with bottom heated and top cooled uniformly. The three-dimensional governing equations are discretized using the finite volume method. In the range of low Reynolds number($0{\leq}Re{\leq}9.6{\times}10^{-2}$), the effects of the aspect ratio($2{\leq}AR{\leq}12$) and Gr/Re are presented and discussed. The longitudinal roll number in the channel is increased with increasing aspect ratio, and the roll number induced, regardless of the aspect ratio number, is even in the range of aspect ratios between 2 and 12, New vortex flow structure containing inclined longitudinal rolls is found, which is affected by aspect ratio and Reynolds number. The ratio Gr/Re is used to check the relative magnitudes of forced and natural convection in the mixed convective flow of high viscous fluid.

The natural convection in a three dimensional enclosure using color capturing technique and computation (색상 포착 기법과 수치계산을 이용한 3차원 밀폐 공간내의 자연대류 연구)

  • Lee, Gi-Baek;Kim, Tae-Yeong;Yang, Jang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1595-1607
    • /
    • 1997
  • The natural convection of a horizontal layer heated from below in a three-dimensional rectangular enclosure was dealt with both numerically and experimentally. The aspect ratios are 1:2:3.5 and Boussinesq fluid is water with the Prandtl number of 5.0. This experimental study showed how to measure the variation of temperature field in a 3-D rectangular enclosure with small aspect ratios by using TLC(Thermochromic Liquid Crystal) and color capturing technique. The experimental temperature field had periodic characteristics of 75 sec at Ra=2.37*10$^{5}$ . But the numerical convection flow had periodic characteristics of 79 sec at the same Rayleigh number. In three dimensional computation it was found that the convection roll structure bifurcated from four rolls to two rolls as the Rayleigh number is increased.

Numerical Study of Double Diffusive Convection of a Stratified Fluid in an Annulus Due to Lateral Heating (환형밀폐용기내 성층화된 유체의 옆면가열에 의한 이중확산대류에 관한 수치해석)

  • 강신형;전창덕;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1720-1730
    • /
    • 1995
  • Finite-difference analysis was conducted to study the natural convection of a stably stratified salt-water solution in an annulus due to lateral heating. The main purpose of this study is to examine in detail the multi-layered flow structure. Calculation was thus made for R $a_{\eta}$=2*10$^{5}$ and 6.5*10$^{5}$ . Formation of layered flow structure, merging process of layers, the corresponding temperature and concentration distributions, Nusselt number variations with time are examined. Numerical results show that in each layer, the temperature profile looks 'S`-shaped and the concentration profile is uniform due to the convective mixing. The formation of the roll and the layer is governed by natural convection due to the temperature gradient and the merging process of the layer by diffusion of the concentration.ation.

Nemerical Analysis of Natural Convection in a Confined Stratified Fluid (밀폐용기내 성층화된 유체의 자연대류에 관한 수치적 연구)

  • 현명택;이진호;모정하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1321-1329
    • /
    • 1989
  • 본 논문에서는 성층화된 용액ㅇ네 수평방향으로 온도구배가 가해지는 경우에 있어서 두 부력인자의 상대적 크기에 따라 나타나는 유동형태와 그에 따른 온도, 농도 분포 및 열전달특성을 수치적으로 연구하고자 한다.

Thermal Instability of Natural Convection in a Glass Melting Furnace (유리 용융로에서 자연대류의 열적 불안정성)

  • Lim, Kwang-Ok;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1774-1783
    • /
    • 1998
  • The transition from steady laminar to chaotic convection in a glass melting furnace specified by upper surface temperature distribution has been studied by the direct numerical analysis of the two and three-dimensional time dependent Navier-Stokes equations. The thermal instability of convection roll may take place when modified Rayleigh number($Ra_m$) is larger than $9.71{\times}10^4$. It is shown that the basic flows in a glass melting furnace are steady laminar, unsteady periodic, quasi-periodic or chaotic flow. The dimensionless time scale of unsteady period is about the viscous diffusion time, ${\tau}_d=H^2/{\nu}_0$. Through primary and secondary instability analyses the fundamental unsteady feature in a glass melting furnace is well defined as the unsteady periodic or weak chaotic flow.

직사각형 밀폐공간내 자연대류 열전달의 수치해석

  • Min, Man-Gi
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.10 no.3
    • /
    • pp.185-219
    • /
    • 1981
  • To analyze two dimensional incompressible laminar natural convection in a rectangular enclosure heated from below and cooled by a horizontal ceiling and two vertical walls, he primitive Navier-Stokes equations and the energy equation were solved numerically in time dependent form by a marker and cell method. A successive over-relaxation method for the elliptic portion of the problem and an explicit method for the parabolic portion were applied for the range of Grashoff number of $5{\times}10^3\;to\;5{\times}10^4$ to get the transient and steady state dimensionless temperature and velocity profiles. For the range of aspect ratio $L/H{\leqq}2.4$ in which only a pair of convection rolls exists mean Nusselt number calculated are as follows : $$N_{NU}0.89\;N_{Gr}^{0.2}(H/L)^{0.45}$$ By path lines drawn by marker particle trajectories roll number of cellular motion were observed for various aspect ratio of the enclosure.

  • PDF

Spatial Analysis on Marine Atmosphere Boundary Layer Features of SAR Imagery Using Empirical Mode Decomposition

  • Jo, Young-Heon;Oliveira, Gustavo Henrique;Yan, Xiao-Hai
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.351-358
    • /
    • 2017
  • A new method to decompose the footprints of marine atmosphere boundary layer (MABL) on Synthetic Aperture Radar (SAR) imagery into characteristic spatial scales is proposed. Using two-dimensional Empirical Mode Decomposition (EMD) we obtain three Intrinsic Mode Functions (IMFs), which mainly present longitudinal rolls, three-dimensional cells and atmospheric gravity waves (AGW). The rolls and cells have spatial scales between 3.0 km and 3.8 km and between 5.3 km and 7.1 km, respectively. Based on previous observations and mixed-layer similarity theory, we estimated MABL's depths that vary from 0.95 km to 1.2 km over the rolls and from 3.0 km to 3.8 km over the cells. The AGW has maximum spectrum at 14.3 km wavelength. The method developed in this work can be used to decompose other satellite imageries into individual features through characteristic spatial scales.

An Investigation of Slab-FEM for Rolling Analysis (압연해석을 위한 슬래브-유한요소법에 대한 연구)

  • Song, Jung-Hoon;Park, Jong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3454-3462
    • /
    • 1996
  • Compared to a full three dimensional FEM, the Slab-FEM hybrid method reduces the required computation time distinctly and it can be applied to the analysis of a shape rolling process. However, the method is somewhat approximate and predictions by the method contain certain inaccuracies. In the present investigation a parameter called T-factor was introduced to compensate the inaccuracies of the method and proper values of the parameter were estimated for different widths of bars and reduction ratios. Then, the method was applied to analyze cold and hot rollings of rectangular bars and predicted results were compared to those of experiments. Nonuniform distributions of temperature in the bars were predicted by utilizing the temperature equation obtained for a semi-infinite solid under radiation and convection boundary conditions. It was found out that accuracies of spread and roll separating force predictions could be enhanced by using proper values of the T-factor.

Three Dimensional Topology of Vortical Structure of a Round Jet in Cross Flow (횡단류 제트 와류구조의 3차원 토폴로지)

  • Shin, Dae Sig;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.918-927
    • /
    • 1999
  • In the fully developed internal flow fields, there are complex transition flows caused by interaction of the cross flow and jet when jet is Injected Into the flow. These interactions are studied by means of the flow visualization methods. An instantaneous laser tomographic method is used to reveal the physical mechanism and the structure of vortices formation in the branch pipe flow. The velocity range of cross flow of the pipe is 0.7m/s and the corresponding Reynolds number $R_{cf}$, based on the duct height is $5.6{\times}10^3$, diameter/height ratios(d/H) 0.14 and velocity ratios 3.0. Oil mist with the size of $10{\mu}m$ diameter is used for the scattering particle. The instantaneous topological features of the vortex ring roll-up of the jet shear layer and characteristics of this flow are studied in detail by performing flow visualization in rectangular duct flow. It is found that the formation and roll-up of ring vortices is a periodic phenomenon. The detailed topology of the vortices in the near field of a cross -flow jet and the mechanism associated with them give enforced hints of vortex breakdown within the vortex system due to the interaction of the jet and the cross-flow.