• Title/Summary/Keyword: Role Mining

Search Result 283, Processing Time 0.024 seconds

In-depth Analysis of Soccer Game via Webcast and Text Mining (웹 캐스트와 텍스트 마이닝을 이용한 축구 경기의 심층 분석)

  • Jung, Ho-Seok;Lee, Jong-Uk;Yu, Jae-Hak;Lee, Han-Sung;Park, Dai-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.10
    • /
    • pp.59-68
    • /
    • 2011
  • As the role of soccer game analyst who analyzes soccer games and creates soccer wining strategies is emphasized, it is required to have high-level analysis beyond the procedural ones such as main event detection in the context of IT based broadcasting soccer game research community. In this paper, we propose a novel approach to generate the high-level in-depth analysis results via real-time text based soccer Webcast and text mining. Proposed method creates a metadata such as attribute, action and event, build index, and then generate available knowledges via text mining techniques such as association rule mining, event growth index, and pathfinder network analysis using Webcast and domain knowledges. We carried out a feasibility experiment on the proposed technique with the Webcast text about Spain team's 2010 World Cup games.

Granule-based Association Rule Mining for Big Data Recommendation System (빅데이터 추천시스템을 위한 과립기반 연관규칙 마이닝)

  • Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.67-72
    • /
    • 2021
  • Association rule mining is a method of showing the relationship between patterns hidden in several tables. These days, granulation logic is used to add more detailed meaning to association rule mining. In addition, unlike the existing system that recommends using existing data, the granulation related rules can also recommend new subscribers or new products. Therefore, determining the qualitative size of the granulation of the association rule determines the performance of the recommendation system. In this paper, we propose a granulation method for subscribers and movie data using fuzzy logic and Shannon entropy concepts in order to understand the relationship to the movie evaluated by the viewers. The research is composed of two stages: 1) Identifying the size of granulation of data, which plays a decisive role in the implications of the association rules between viewers and movies; 2) Mining the association rules between viewers and movies using these granulations. We preprocessed Netflix's MovieLens data. The results of meanings of association rules and accuracy of recommendation are suggested with managerial implications in conclusion section.

Research on Mining Technology for Explainable Decision Making (설명가능한 의사결정을 위한 마이닝 기술)

  • Kyungyong Chung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.186-191
    • /
    • 2023
  • Data processing techniques play a critical role in decision-making, including handling missing and outlier data, prediction, and recommendation models. This requires a clear explanation of the validity, reliability, and accuracy of all processes and results. In addition, it is necessary to solve data problems through explainable models using decision trees, inference, etc., and proceed with model lightweight by considering various types of learning. The multi-layer mining classification method that applies the sixth principle is a method that discovers multidimensional relationships between variables and attributes that occur frequently in transactions after data preprocessing. This explains how to discover significant relationships using mining on transactions and model the data through regression analysis. It develops scalable models and logistic regression models and proposes mining techniques to generate class labels through data cleansing, relevance analysis, data transformation, and data augmentation to make explanatory decisions.

Data Server Mining applied Neural Networks in Distributed Environment (분산 환경에서 신경망을 응용한 데이터 서버 마이닝)

  • 박민기;김귀태;이재완
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.473-476
    • /
    • 2003
  • Nowaday, Internet is doing the role of a large distributed information service tenter and various information and database servers managing it are in distributed network environment. However, the we have several difficulties in deciding the server to disposal input data depending on data properties. In this paper, we designed server mining mechanism and Intellectual data mining system architecture for the best efficiently dealing with input data pattern by using neural network among the various data in distributed environment. As a result, the new input data pattern could be operated after deciding the destination server according to dynamic binding method implemented by neural network. This mechanism can be applied Datawarehous, telecommunication and load pattern analysis, population census analysis and medical data analysis.

  • PDF

Schema- and Data-driven Discovery of SQL Keys

  • Le, Van Bao Tran;Sebastian, Link;Mozhgan, Memari
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.3
    • /
    • pp.193-206
    • /
    • 2012
  • Keys play a fundamental role in all data models. They allow database systems to uniquely identify data items, and therefore, promote efficient data processing in many applications. Due to this, support is required to discover keys. These include keys that are semantically meaningful for the application domain, or are satisfied by a given database. We study the discovery of keys from SQL tables. We investigate the structural and computational properties of Armstrong tables for sets of SQL keys. Inspections of Armstrong tables enable data engineers to consolidate their understanding of semantically meaningful keys, and to communicate this understanding to other stake-holders. The stake-holders may want to make changes to the tables or provide entirely different tables to communicate their views to the data engineers. For such a purpose, we propose data mining algorithms that discover keys from a given SQL table. We combine the key mining algorithms with Armstrong table computations to generate informative Armstrong tables, that is, key-preserving semantic samples of existing SQL tables. Finally, we define formal measures to assess the distance between sets of SQL keys. The measures can be applied to validate the usefulness of Armstrong tables, and to automate the marking and feedback of non-multiple choice questions in database courses.

The Strategy making Process For Automated Negotiation System Using Agents (에이전트를 이용한 자동화된 협상에서의 전략수립에 관한 연구)

  • Jeon, Jin;Park, Se-Jin;Kim, Sung-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.207-216
    • /
    • 2000
  • Due to recent growing interest in autonomous software agents and their potential application in areas such as electronic commerce, the autonomous negotiation become more important. Evidence from both theoretical analysis and observations of human interactions suggests that if decision makers have prior information on opponents and furthermore learn the behaviors of other agents from interaction, the overall payoff would increase. We propose a new methodology for a strategy finding process using data mining in autonomous negotiation system ; ANSIA (Autonomous Negotiation System using Intelligent Agent). ANSIA is a strategy based negotiation system. The framework of ANSIA is composed of following component layers : 1) search agent layer, 2) data mining agent layer and 3) negotiation agent layer. In the data mining agent layer, that plays a key role as a system engine, extracts strategy from the historic negotiation is extracted by competitive learning in neural network. In negotiation agent layer, we propose the autonomous negotiation process model that enables to estimate the strategy of opponent and achieve interactive settlement of negotiation. ANISIA is motivated by providing a computational framework for negotiation and by defining a strategy finding model with an autonomous negotiation process.

  • PDF

The Removal of Heavy Metals and Anion in Mining Wastewater by Silica Matrix Coagulation (Silica계 응집제를 이용한 광산폐수의 중금속 및 음이온 제거)

  • 이해승;이영신;현근우
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.80-86
    • /
    • 2001
  • This research was carried out to investigate the effect of microscopic silica matrix coagulation on heavy metals and anion removal in mining wastewater. pH and alkalinity played an important role to coagulate heavy metals such as Al, and Fe and an anion such as ${SO_4}^{2-}$ with silica matrix as well as NaOH. However, the efficiency to form coagulates was much greater in silica matrix-treated wastewater than NaOH-treated one. Fe in wastewater formed coagulation with both silica matrix and NaOH treatments resulting in lowering Fe content in wastewater at above pH 9. For Al removal in wastewater, silica matrix-treated wastewater at above pH 12.3 formed stable coagulate with Al, while NaOH-treated one did not. Alkalinities of 89 and 220 mg/L were required to stabilize silica matrix treated coagulate with Fe and Al, respectively. Reaction time of ten minute was required to provide enough reaction for coagulation between heavy metals and silica matrix. Heavy metals and anion leachates were much lower in coagulate with silica matrix than that with NaOH, which indicates that silica matrix could be used to remove heavy metals efficiently.

  • PDF

Prediction of Product Life Cycle Using Data Mining Algorithms : A Case Study of Clothing Industry (데이터마이닝 알고리즘을 이용한 제품수명주기 예측 : 의류산업 적용사례)

  • Lee, Seulki;Kang, Ji Hoon;Lee, Hankyu;Joo, Tae Woo;Oh, Shawn;Park, Sungwook;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.3
    • /
    • pp.291-298
    • /
    • 2014
  • Demand forecasting plays a key role in overall business activities such as production planning, distribution management, and inventory management. Especially, for a fast-changing environment of the clothing industry, logical forecasting techniques are required. In this study, we propose a procedure to predict product life cycle using data mining algorithms. The proposed procedure involves three steps : extracting key variables from profiles, clustering, and classification. The effectiveness and applicability of the proposed procedure were demonstrated through a real data from a leading clothing company in Korea.

An Ontology-Based Labeling of Influential Topics Using Topic Network Analysis

  • Kim, Hyon Hee;Rhee, Hey Young
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1096-1107
    • /
    • 2019
  • In this paper, we present an ontology-based approach to labeling influential topics of scientific articles. First, to look for influential topics from scientific article, topic modeling is performed, and then social network analysis is applied to the selected topic models. Abstracts of research papers related to data mining published over the 20 years from 1995 to 2015 are collected and analyzed in this research. Second, to interpret and to explain selected influential topics, the UniDM ontology is constructed from Wikipedia and serves as concept hierarchies of topic models. Our experimental results show that the subjects of data management and queries are identified in the most interrelated topic among other topics, which is followed by that of recommender systems and text mining. Also, the subjects of recommender systems and context-aware systems belong to the most influential topic, and the subject of k-nearest neighbor classifier belongs to the closest topic to other topics. The proposed framework provides a general model for interpreting topics in topic models, which plays an important role in overcoming ambiguous and arbitrary interpretation of topics in topic modeling.

Customer Value Proposition Methodology Using Text Mining of Online Customer Reviews (온라인 고객 리뷰에 대한 텍스트마이닝을 활용한 고객가치제안 방법)

  • Han, Young-Kyung;Kim, Chul-Min;Park, Kwang-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.85-97
    • /
    • 2021
  • Online consumer activities have increased considerably since the COVID-19 outbreak. For the products and services which have an impact on everyday life, online reviews and recommendations can play a significant role in consumer decision-making processes. Thus, to better serve their customers, online firms are required to build online-centric marketing strategies. Especially, it is essential to define core value of customers based on the online customer reviews and to propose these values to their customers. This study discovers specific perceived values of customers in regard to a certain product and service, using online customer reviews and proposes a customer value proposition methodology which enables online firms to develop more effective marketing strategies. In order to discover customers value, the methodology employs a text-mining technology, which combines a sentiment analysis and topic modeling. By the methodology, customer emotions and value factors can be more clearly defined. It is expected that online firms can better identify value elements of their respective customers, provide appropriate value propositions, and thus gain sustainable competitive advantage.