• Title/Summary/Keyword: Rod-ground system

Search Result 63, Processing Time 0.031 seconds

Simulation Integration Technique of a Full Vehicle Equipped with EPS Control System (EPS 제어시스템 장착 승용차의 통합적 시뮬레이션 기법 연구)

  • Jang Bong-Choon;So Sang-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.72-80
    • /
    • 2006
  • Electric Power Steering (EPS) mechanism has become widely equipped in passenger vehicle due to the increasing environmental concerns and higher fuel efficiency. This paper describes the development of concurrent simulation technique and simulation integration technique of EPS control system with a dynamic vehicle system. A full vehicle model interacting with EPS control algorithm was concurrently simulated on a single bump road condition. The dynamic responses of vehicle chassis and steering system resulting from road surface impact were evaluated and compared with proving ground experimental data. The comparisons show reasonable agreement on tie-rod load, rack displacement, steering wheel torque and tire center acceleration. This concurrent simulation capability was employed fur EPS performance evaluation and calibration as well as for vehicle handling performance integration and synthesis.

Evaluations on the Potential Interferences between Ground Rods (봉상 접지전극 상호간의 전위간섭에 대한 평가)

  • Lee, Bok-Hee;Lee, Su-Bong;Lee, Tae-Hyung;Jung, Hyun-Uk;Kil, Hyung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.92-98
    • /
    • 2006
  • This paper deals with the potential interferences between ground rods. To propose a method for reducing the potential interference caused by grounding electrodes, the theoretical analysis and the reduced scale model tests, which we related to the measurement and computation of ground potential rise and potential interference caused by actual-sized grounding electrodes where current is injected, were carried out. The ground potential rise and potential interference coefficients were measured by using the hemispherical water tank grounding simulator and calculated by CDEGS software as a function of the distance between grounding electrodes. The ground potential rises and potential interference coefficients strongly depend on the distance between grounding electrodes, and the measured results were compared with the computer calculated data and were known in good agreement.

Development of de-noised image reconstruction technique using Convolutional AutoEncoder for fast monitoring of fuel assemblies

  • Choi, Se Hwan;Choi, Hyun Joon;Min, Chul Hee;Chung, Young Hyun;Ahn, Jae Joon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.888-893
    • /
    • 2021
  • The International Atomic Energy Agency has developed a tomographic imaging system for accomplishing the total fuel rod-by-rod verification time of fuel assemblies within the order of 1-2 h, however, there are still limitations for some fuel types. The aim of this study is to develop a deep learning-based denoising process resulting in increasing the tomographic image acquisition speed of fuel assembly compared to the conventional techniques. Convolutional AutoEncoder (CAE) was employed for denoising the low-quality images reconstructed by filtered back-projection (FBP) algorithm. The image data set was constructed by the Monte Carlo method with the FBP and ground truth (GT) images for 511 patterns of missing fuel rods. The de-noising performance of the CAE model was evaluated by comparing the pixel-by-pixel subtracted images between the GT and FBP images and the GT and CAE images; the average differences of the pixel values for the sample image 1, 2, and 3 were 7.7%, 28.0% and 44.7% for the FBP images, and 0.5%, 1.4% and 1.9% for the predicted image, respectively. Even for the FBP images not discriminable the source patterns, the CAE model could successfully estimate the patterns similarly with the GT image.

Transient Grounding Impedance Characteristics of a Copper Rod-type Grounding Electrode used for Electric Distribution Systems Using EDSA Program (EDSA 프로그램을 이용한 배전계통에 사용되는 동봉 접지전극의 과도 접지임피던스 특성)

  • Kim, Kyung-Chul;Oh, Kyung-Hoon;Kim, Min-Sung;Choi, Jong-Kee;Kim, Dong-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.26-32
    • /
    • 2009
  • Grounding insures a reference potential point for electric devices and also provides a law resistance path for fault or transient currents in the earth. The ground impedance as a function of frequency is necessary for determining its performance since fault or transient currents could contain a wide range of frequencies. A copper rod electrode is the most commonly used grounding electrode in electric distribution systems. In this paper, the grounding impedance of copper rods has been measured in frequency raging from 60[Hz] up to 100 [kHz] and an equivalent model of the grounding impedance is identified from the measured values. The grounding impedance under study when a typical lightning surge is injected into the grounding system was simulated numerically and graphically through the use of the EDSA software program.

Co-Simulation and Simulation Integration Technology Development for SUV Vehicle Equipped with Electric Power Steering (EPS) (SUV - EPS 차량의 동시 시뮬레이션 기술 개발 및 시뮬레이션 통합 기술 개발)

  • B. C. Jang;Y. K. Eom
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.472-475
    • /
    • 2003
  • Electric Power Steering (EPS) mechanism has become widely equipped in passenger vehicle due to the environmental consciousness and higher fuel efficiency. This paper describes the development of co-simulation technique and simulation integration technique of EPS control system with dynamic vehicle model. A full vehicle model interacted with EPS control algorithm is concurrently simulated on a single bump road condition. Dynamic responses of vehicle chassis and steering system resulting from road surface impact are evaluated and compared with proving ground experimental data. The comparisons will show reasonable agreement on tie-rod load. rack displacement, handle-wheel torque and tire center acceleration. This developed simulation capability can be used for EPS performance evaluation and calibration as well as for vehicle handling performance integration and synthesis.

  • PDF

Vibration Control of a Tracked Vehicle with ER Suspension Units (II);Modeling and Control of a Tracked Vehicle (ER 현수장치를 갖는 궤도 차량의 진동제어 (II);궤도차량의 모델링 및 제어)

  • Park, Dong-Won;Choe, Seung-Bok;Gang, Yun-Su;Seo, Mun-Seok;Sin, Min-Jae;Choe, Gyo-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1960-1969
    • /
    • 1999
  • This paper presents dynamic modeling and controller design of a tracked vehicle installed with the double rod type ERSU(electro-rheological suspension unit). A 16 degree-of-freedom model for the tracked vehicle is established by Lagrangian method followed by the formulation of a new sky-ground hook controller. This controller takes account for both the ride quality and the steering stability. The weighting parameter between the two performance requirements is adopted to adjust required performance characteristics with respect to the operation conditions such as road excitation. The parameter is appropriately determined by employing a fuzzy algorithm associated with the vehicle motion. Computer simulations are undertaken in order to demonstrate the effectiveness of the proposed control system. Acceleration values at the driver's seat are analyzed under bump road profile, while frequency responses of vertical acceleration are investigated under random road excitation.

Transient Impedance Characteristics of Grounding Rods (봉상접지극의 과도임피던스 특성)

  • 김일권;김점식;송재용;길경석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.568-572
    • /
    • 2000
  • This paper describes the experimental results of a transient impedance characteristics of grounding rods to a square pulse and standard lightning impulse current. The test were performed on single grounding rod($\phi$ 10mm, 1m) and triple-grounding rods( $\phi$ 10mm, 1m) of equilateral triangles with 5m spacing. For measurements of transient impedance, a pulse generator which can produce square wave of 30ns rise time and 20U Pulse duration was designed and fabricated. In the experiment, transient impedance of the grounding systems have been investigated from the recorded potential and current waveforms. The results showed that the value of the transient impedance is quite higher than the stationary resistance, and provide useful information for the value of a grounding system considered transient characteristics under a high frequency condition such as lightning stokes and ground-fault.

  • PDF

A Simulator for Potential Distribution Analysis

  • Kil, Gyung-Suk;Gil, Hyong-Jun;Park, Dae-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.225-229
    • /
    • 2012
  • This paper proposes a reduced-scale simulator that can replace numerical analytic methods for the estimation of potential distribution caused by ground faults in various grounding systems. The simulator consists of a hemispherical electrolytic tank, a three-dimensional potential probe, a grounding electrode, and a data acquisition module. The potential distribution is measured using a potentiometer with a position-tracing function when a test current flows to the grounding electrode. Using the simulator, we could clearly analyze the potential distribution for a reduced- scale model by one-eightieth of the buried depth and length of the grounding rod and grounding grid. Once both the shape of the grounding electrode and the fault current are known, the actual potential distribution can be estimated.

Application to Breakwater Foundation by DCM (DCM 공법에 의한 방파제 기초 적용사례)

  • Gu, Im-Sik;Kim, Young-Sang;Jeong, Gyeong-Hwan;Choi, Jeong-Uk;Shin, Min-Sik;Kim, Jae-Hyon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.372-382
    • /
    • 2006
  • The DCM(Deep Cement Mixing) Method was introduced domestically in 1985 and has been applied widely to improve stability, increase bearing capacity and reduce settlement of the structure. It has been only performed by the combined equipment to improve the soft ground in coastal areas. But it has qualify-control problems such as interference of waves and improving depth, etc. Therefore DCM Barge of specialist equipment, named by Dong Ji Ho, was equipped with three mixing shafts with four rod and installed GPS system In itself, had been developed in 2005 for the purpose of solving the above problems. This paper represents about Dong Ji Ho's qualify-control system as well as it's first domestic application to in-situ trial test and the original design of the Ulsan breakwater site.

  • PDF

Scale Effects and Field Applications for Continuous Intrusion Miniature Cone Penetrometer (연속관입형 소형콘관입시험기에 대한 크기효과 및 현장적용)

  • Yoon, Sungsoo;Kim, Kyu-Sun;Lee, Jin Hyung;Shin, Dong-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2359-2368
    • /
    • 2013
  • Cone penetration tests (CPTs) have been increasingly used for site characterizations. However, the site investigations using CPTs are often limited due to soil conditions depending on the cone size and capacity of the CPT system. The small sectional area of a miniature cone improves the applicability of the CPT system due to the increased capacity of the CPT system. A continuous intrusion system using a coiled rod allows fast and cost effective site investigation. In this study, the performance of the continuous intrusion miniature cone penetration test (CIMCPT) system has been evaluated by comparison tests with the standard CPT system at several construction sites in Korea. The results show that the CIMCPT system has a same performance with the CPT system and has advantages on the mobility and applicability. According to field verification tests for scale effect evaluation, the cone tip resistance evaluated by CIMCPT overestimates by 10% comparing to standard CPTs. A crawler mounted with the CIMCPT system has been implemented to improve accessibility to soft ground, and has shown improvement over the truck type CIMCPT system. Therefore, the improved CIMCPT system can be utilized as a cost effective and highly reliable soil investigation methodology to detect the depth of soft ground and to evaluate soil classification.