• Title/Summary/Keyword: Rocking

Search Result 339, Processing Time 0.021 seconds

Proposing the Shear Force Equation of GFRP Strengthened Masonry Wall (유리섬유로 보강한 조적벽체의 전단내력식 설정에 관한 연구)

  • Kwon, Ki-Hyuk;Lee, Soo-Chul;Jung, Won-Chul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.1-9
    • /
    • 2007
  • This study does by purpose that propose shear resisting force equation of reinforced masonry wall that is reinforced by GFRP(glass fiber reinforced polymer) based on result that is noted through cyclic loading of masonry wall and a shaking table experiment of mock that reflect identifying marks of masonry building which is constructed in domestic. It was Rocking mode to dominate failure of masonry wall in the experiment results, and the equations of UBC show the most resemblant value with experiment results. Through this study, propose the shear force equation of GFRP strengthened masonry wall as following. $$V_n=0.02A_n{\sqrt{f'_m}}+0.022b_gh_g(1+2{\alpha})^3{\sqrt{f_g}}(N/mm^2)$$.

Structural properties of $Zn:LiNbO_3/Mg:LiNbO_3$ single crystal thin films grown by LPE method (LPE법으로 성장시킨 $Zn:LiNbO_3/Mg:LiNbO_3$ 단결정 박막의 구조적 특성)

  • Lee, H.J.;Shin, T.I.;Lee, J.H.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.3
    • /
    • pp.120-123
    • /
    • 2005
  • The 5 mol% ZnO doped $LiNbO_3$ film and the 2 mol% MgO doped $LiNbO_3$ film were grown on the $LiNbO_3$ (001) substrate by liquid phase epitaxy (LPE) method with $Li_2CO_3-V_2O_5$ flux system. The crytsallinity and the lattice mismatch between $Zn:LiNbO_3$, film and $Mg:LiNbO_3$, film were analyzed by x-ray rocking curve (XRC). In addition, the ZnO and MgO distribution in the cross-section of the multilayer thin films was observed using electron probe micro analyzer (EPMA).

A Study on Preferred Orientation of ZnO Piezoelectric Thin Film Using Helped Seed Layer (보조씨드층을 이용한 ZnO 압전박막의 우선배향성에 관한 연구)

  • Park, In-Chul;Kim, Hong-Bae
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.619-623
    • /
    • 2006
  • The most important factor which determines resonance characteristics of FBAR(Film Bulk Acoustic Resonator) is the piezoelectricity of piezoelectric film. The piezoelectric properties of ZnO thin films which is strong as FBAR piezoelectric film is determined by the degree of c-axis preferred orientation with (002) plan. Therefore, many researchers have been interested in the study on the preferred orientation of the piezoelectric thin film. This paper has studied the preferred orientation of ZnO piezoelectric thin films using the helped seed layer of ZnO. The result shows that the c-axis ZnO thin films with columnar grains that the value of standard $deviation(\sigma)$ of XRD rocking curve is of $\sigma=1.15^{\circ}$ have the excellent piezoelectric property.

Deposition of ZnO Thin Films by RF Magnetron Sputtering and Charcaterization of the ZnO thin film SAW filter (RF 마그네트론 스터터링에 의한 ZnO박막증착 및 SAW 필터 특성 분석)

  • Lee, Yong-Ui;Yang, Hyeong-Guk;Kim, Yeong-Jin;Han, Jeong-In;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.783-791
    • /
    • 1994
  • Piezoelectric ZnO thin films were deposited on 7059 glass substrate by rf magnetron sputtering. The effects of deposition parameter, such as rf power, gas pressure and $O_{2}$/Ar gas ratio, on the crystallinity and electrical properties of the deposited ZnO thin films were studied. It was found that the deposition rate was higher than the previously reported values. ZnO films were suitable for SAW filter since a standard deviation of XRD (002) peak rocking curve was less than $6^{\circ}$. ZnO thin films, which were deposited at $O_{2}$/Ar ratio larger than 25%, showed high resistance. SAW filter was fabricated using ZnO film, of which thickness was 0.25 of the wavelength of the propatating surface acoustic wave. The measured frequency response was consistent with the calculated one. The SAW filter had center frequency 39.08 MHz, phase velocity 2501 m/sec and insertion loss 29 dB.

  • PDF

Analysis of Dispersion Characteristics of Circumferential Guided Waves and Application to feeder Cracking in Pressurized Heavy Water Reactor (원주 유도초음파의 분산 특성 해석 및 가압중수로 피더관 균열 탐지에의 응용)

  • Cheong, Yong-Moo;Kim, Sang-Soo;Lee, Dong-Hoon;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.307-314
    • /
    • 2004
  • A circumferential guided wave method was developed to detect the axial crack on the bent feeder pipe. Dispersion curves of circumferential guided waves were calculated as a function of curvature of the pipe. In the case of thin plate, i.e. infinite curvature, as the frequency increases, the $S_0$ and $A_0$ mode coincide and eventually become Rayleigh wave mode. In the case of pipe, however, as the curvature increases, the lowest modes do not coincide even in the high frequencies. Based on the analysis, a rocking technique using angle beam transducer was applied to detect an axial defect in the bent region of PHWR feeder pipe. Based on the analysis of experimenal data for artificial notches, the vibration modes of each signal were identified. It was found that the notches with the depth of )0% of wall thickness can be detected with the method.

Investigation of Seismic Performance of RC Wall-Slab Frames with Masonry Infill (조적채움벽을 갖는 RC 벽-슬래브 골조의 내진성능 연구)

  • Kim, Chan Ho;Lee, Seung Jae;Heo, Seok Jae;Eom, Tae Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.137-147
    • /
    • 2022
  • This study investigated the seismic performance of reinforced concrete (RC) wall-slab frames with masonry infills. Four RC wall-slab frames with or without masonry infill were tested under cyclic loading. The RC frames were composed of in-plane and out-of-plane walls and top and bottom slabs. For masonry infill walls, cement bricks were stacked applying mortar paste only at the bed joints, and, at the top, a gap of 50 mm was intentionally left between the masonry wall and top RC slab. Both sides of the masonry walls were finished by applying ordinary or fiber-reinforced mortars. The tests showed that despite the gap on top of the masonry walls, the strength and stiffness of the infilled frames were significantly increased and were different depending on the direction of loading and the finishing mortars. During repeated loading, the masonry walls underwent horizontal and diagonal cracking and corner crushing/spalling, showing a rocking mode inside the RC wall-slab frame. Interestingly, this rocking mode delayed loss of strength, and as a result, the ductility of the infilled frames increased to the same level as the bare frame. The interaction of masonry infill and adjacent RC walls, depending on the direction of loading, was further investigated based on test observations.

Design and analysis of isolation effectiveness for three-dimensional base-seismic isolation of nuclear island building

  • Zhu, Xiuyun;Lin, Gao;Pan, Rong;Li, Jianbo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.374-385
    • /
    • 2022
  • In order to investigate the application of 3D base-seismic isolation system in nuclear power plants (NPPs), comprehensive analysis of constitution and design theory for 3-dimensional combined isolation bearing (3D-CIB) was presented and derived. Four different vertical stiffness of 3D-CIB was designed to isolate the nuclear island (NI) building. This paper aimed at investigating the isolation effectiveness of 3D-CIB through modal analysis and dynamic time-history analysis. Numerical results in terms of dynamic response of 3D-CIB, relative displacement response, acceleration and floor response spectra (FRS) of the superstructure were compared to validate the reliability of 3D-CIB in mitigating seismic response. The results showed that 3D-CIB can significantly attenuate the horizontal acceleration response, and a fair amount of the vertical acceleration response reduction of the upper structure was still observed. 3D-CIB plays a significant role in reducing the horizontal and vertical FRS, the vertical FRS basically do not vary with the floor height. The smaller the vertical stiffness of 3D-CIB is, the better the vertical isolation effectiveness is, whereas, it will increase the displacement and the rocking effect of superstructure. Although the advantage of 3D-CIB is that the vertical stiffness can be flexibly adjusted, it should be designed by properly accounting for the balance between the isolation effectiveness and displacement control including rocking effect. The results of this study can provide the technical basis and guidance for the application of 3D-CIB to engineering structure.

Performance Comparison of Steel Dampers with or without Lateral Deformation Prevention Details and Strut Shapes (횡변형 방지 상세 유무 및 스트럿 형상에 따른 강재댐퍼의 성능 비교)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.66-73
    • /
    • 2022
  • In this study, the experimental results of 7 dampers with the same strut height and similar cross-sectional area were compared based on the existing research results on steel dampers with rocking behavior. As steel plate dampers, SI-260, SV-260, SS-260 without Lateral deformation prevention detail(Ldpd), I-1, V-1, S-1 with Ldpd, and R20-260 with steel rod damper were evaluated. In addition, R15-260, which has a cross-sectional area of 0.56 times than other dampers, was also reviewed to appropriately evaluate the behavior of the steel rod damper. An important study result is the application superiority of the steel rod damper, which improved the unidirectional behavior of the steel plate dampers. This was proved in the moment-resistance capacity and displacement ratio evaluation. As a result of the evaluation, the R20-260, a steel bar damper, was evaluated as having the best performance. In addition, it is judged to have sufficient seismic resistance as it shows deformability up to a displacement ratio of 2.0.

The effect of PVT process parameters on the resistance of HPSI-SiC crystal (PVT 공법의 공정 변수가 고순도 반절연 SiC 단결정의 저항에 미치는 영향)

  • Jun-Hyuck Na;Min-Gyu Kang;Gi-Uk Lee;Ye-Jin Choi;Mi-Seon Park;Kwang-Hee Jung;Gyu-Do Lee;Woo-Yeon Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.41-47
    • /
    • 2024
  • In this study, the resistance characteristics of semi-insulating SiC single crystals grown using the PVT method were investigated, considering the purity level of SiC source powders used in PVT growth and the cooling procedure after crystal growth. Two β-SiC powders with different purities were employed, and the cooling rate after growth was adjusted to achieve various resistance values. 4-inch HPSI-SiC ingots were grown using the PVT method, utilizing SiC powders with low nitrogen concentration and relatively high nitrogen concentration. These ingots were then subjected to different cooling procedures to modify the cooling rate. Transmission/absorption spectra and crystal quality of the grown crystals were analyzed through UV/VIs/NIR spectroscopy and X-ray rocking curve analysis, respectively. Additionally, electrical properties were investigated through non-contact resistivity analysis to identify the dominant factors influencing resistivity properties.

An Experimental Study on the Shear Behaviour of Face Brick Wall Tied with the Screw Connector (나선형 긴결철물을 이용한 조적치장벽체의 전단거동에 관한 실험연구)

  • Kwon, Ki Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.145-154
    • /
    • 2007
  • As buildings are built higher and their service life made longer, face brick walls are also required to be constructed in an easy and systematic manner, and to ensure their satisfying structural performance, inspectingly, against lateral load. Therefore this study aims to investigate the structural performance of face brick walls constructed by a new method using screwed stainless steel connectors and provide fundamental experiment data for field application of this method. The results of this study indicated that the face brick wall tied with screw connectors had better shear capacity against rocking motion than that of the wall constructed with ordinary tie bars when their tie spacing was the same. Based on the good performance of the wall tied with the screw connector, it is also expected that the spiral anchors developed in this study can possibly applied to high-rise by adjusting the spacing of the anchors considering the difference of dimensions.