• Title/Summary/Keyword: Rocket Design

Search Result 659, Processing Time 0.022 seconds

Study on Leakage Analyses and Experimets on a Main Oxidizer shut-off Valve (산화제 개폐밸브 플랜지 기밀 해석 및 시험에 관한 연구)

  • Yoo, Jae-Han;Hong, Moon-Geun;Bae, Young-Woo;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.251-253
    • /
    • 2010
  • In the leakage test of a Main Oxidizer shut-off valve, gas leakage was found on the middle flange with a metal conical seal. The structural analysis was performed for three models with different numbers of bolts and flange shapes and then one model was selected in consideration of the minimum axial gap deformation as well as the weight increment due to the change of flange shapes. Experimental leakage tests for the simulated flanges of the selected model has resulted in no gas leakage, and consequently the structural analysis method for the design of the middle flanges has proved feasible.

  • PDF

Thrust Loss of Propulsion System with Scarfed Nozzle (절삭 노즐 적용 추진기관의 추력 손실)

  • Lee, Jeongsub;Park, Jaebum;Lee, Sangyon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1108-1111
    • /
    • 2017
  • The nozzle exit shape is scarfed according to the external shape of missile when the nozzle axis should be canted from missile axis due to missile system application. There is inevitable thrust loss for the scarfed nozzle comparing to non-scarfed nozzle. The numerical analysis is necessary to calculate the thrust loss in design process, and ground tests of rocket motor were performed to verify the calculation results. From the comparison of non-scarfed nozzle and scarfed nozzle experiment results, the thrust loss from calculation was about 16.6% and that from experiments was about 15.0%.

  • PDF

Design and Verification of a Injector-Head with Multiple Injectors Arranged in a Row (일렬형 다중 인젝터를 가진 분리형 헤드 제작 및 검증시험)

  • Yu, Isang;Choi, Jiseon;Shin, Donghae;Park, Jinsoo;Ko, Youngsung;Kim, Seonjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1016-1020
    • /
    • 2017
  • This study was conducted to develop a test facility that simulates the combustion instability that occurs in a real-scale liquid rocket combustor. A separate engine head with 3 injectors arranged in a row was designed/manufactured and verified through preliminary tests. The flow rate and spray pattern of the head were confirmed by the cold flow test. Next, propellant spray test and combustion test were carried out. A preliminary combustion test was carried out at 10 bar and the combustion chamber pressure was measured to be significantly lower than the target pressure. This is because it was a low pressure test, and it is expected to be resolved in the high pressure test in the future.

  • PDF

an Analysis of the Variation on the Impedance Characteristic according to Effective Area of Globe Control Valve at Low Frequency Perturbation (저주파 압력섭동에서 글로브 제어밸브의 유효 단면적에 따른 임피던스 특성 변화 해석)

  • Park, Seungsoo;Yoon, Woongsup;ohm, Wonsuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.718-723
    • /
    • 2017
  • In this paper, Analytical study is carried out on the impedance characteristics of the globe control valve, which is mainly used for thrust control in liquid rockets, according to the effective area at low frequency perturbation. The impedance tends to increase according to effective area and the cause of impedance characteristic change through flow field visualization is investigated. In the future, the information on the change in the impedance characteristics of the control valve can be used to obtain the impedance of the supply system and it can be utilized to predict pogo phenomenon as well as design accumulator and orifice to reduce the pogo phenomenon.

  • PDF

Prediction of the Strength and Vibration Safety of the 30ton Thrust Turbopump Turbine by Finite Element Analysis (30톤 추력급 터보펌프 터빈의 구조 강도 및 진동 해석을 통한 안정성 예측)

  • Yoon, Suk-Hwan;Jeon, Seong-Min;Lee, Kwan-Ho;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.20-28
    • /
    • 2004
  • Static and dynamic structural analyses of a turbine bladed-disk for a liquid rocket turbopump are performed to investigate the safety level of strength and vibration at design point. During operation, turbopump is exposed to various external loads. Therefore, the effects of them should be carefully considered and properly modeled. First, due to the high rotational speed of the turbopump, effects of centrifugal forces are considered in the structural analysis. Thermal load caused by severe temperature differences is also considered. A three dimensional finite element method (FEM) is used for linear and nonlinear structural analyses with modified Newton-Raphson iteration method. After the nonlinear solution is obtained from the structural analysis, dynamic characteristics are obtained as a function of rotational speed from the linearized eigenvalue analysis at an equilibrium position. From the analysis results, characteristics of stress distribution and vibration were thoroughly examined and investigated.

A Study of Supersonic Jets Impinging on Axisymmetric Cone (원뿔에 충돌하는 초음속 제트에 관한 연구)

  • Park,Jong-Ho;Lee,Taek-Sang;Kim,Yun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.26-31
    • /
    • 2003
  • In this paper, supersonic jets impinging on axisymmetric cone were investigated to obtain fundamental design data for jet deflector case of example being VTOL/STOL or rocket launch. It was of interest to study flow phenomena such as shock interactions and separation induced by shear layer. Experiments were conducted to obtain schlieren flow visualization and measurement of surface pressure. Numerical results are compared with the experimental result. The dominant feature of the flow is the shock pattern induced by the interaction between the cone shock and the barrel shock. This pattern can take a wide variety of forms depending on the structure of the free jet and strongly influences the form of the surface pressure distributions.

DEVELOPMENT OF MAGNETOMETER DIGITAL CIRCUIT FOR KSR-3 ROCKET AND ANALYTICAL STUDY ON CALIBRATION RESULT (KSR-3 과학 로켓용 자력계 디지털 회로 개발 및 검교정시험 결과 분석 연구)

  • 이은석;장민환;황승현;손대락;이동훈;김선미;이선민
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.293-304
    • /
    • 2002
  • This paper describes the re-design and the calibration results of the MAG digital circuit onboard the KSR-3. We enhanced the sampling rate of magnetometer data. Also, we reduced noise and increased authoritativeness of data. We could confirm that AIM resolution was decreased less than InT of analog calibration by a digital calibration of magnetometer. Therefore, we used numerical-program to correct this problem. As a result, we could calculate correction and error of data. These corrections will be applied to magnetometer data after the launch of KSR-3.

A Study on the Selection of Forward Flow Forming Conditions with Inconel718 Tube for Mortar Barrel Manufacturing (박격포 포신 제작을 위한 Inconel718 소재의 전진 유동성형 조건 선정에 관한 연구)

  • Ko, Se-Kwon;Cho, Young-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.51-59
    • /
    • 2019
  • Flow forming is an eco-friendly and high-efficiency plastic deformation process with fewer chips during a process which is specifically used to manufacture seamless tubular products like tire wheels, rocket motor cases etc. On the development of mortar barrel using Inconel718 tube, some flow formed products had dimensional errors on their thickness. In this study, our purpose is to optimize the process conditions with the smallest dimensional error. In order to find an optimum process condition, 2D axisymmetric FEM simulation analyses with Taguchi method were conducted. Geometric variables (attack angle, flatting angle, roller nose radius) and operating parameters (depth of forming, feed rate) are considered as control factors. Forward flow forming with single roller was first analyzed to determine the effective factors using AFDEX software and attack angle of the roller was identified as the most influential factor. Also, the nose radius of the rollers was confirmed as a significant factor in multi-rollers flow forming system. The effect of rollers offset values are also studied and finally, we proposed optimal conditions to improve the accuracy of flow forming process with Inconel718 tube for mortar barrel manufacturing.

Effects of Fuel-Injection Pressure on the Spray Breakup Characteristics in Small LRE Injector (소형 액체로켓엔진 인젝터의 분무 분열특성에 대한 연료분사압력의 영향)

  • Jung, Hun;Kim, Sung-Cho;Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.50-57
    • /
    • 2007
  • Spray characteristics of an injector in a small liquid rocket engine (LRE) is characterized by Particle Image Velocimetry (PIV) and Dual-mode Phase Doppler Anemometry (DPDA). Instantaneous plane images captured by PIV are examined for the qualitative prediction of spray breakup with the setup of evaluation technique for effect of spray angles on injector performance. DPDA is also applied in order to quantify the average velocity, turbulent intensity, SMD, and number density of spray droplets along the spray stream distance leading to precise observation of spray atomization behavior. An objective of the study is the derivation of design parameters of new injectors and the establishment of performance criteria through the clear understanding of spray characteristics.

Damping Characteristic of Resonator according to Geometry Variation (음향공 형상 변화에 따른 감쇠 특성 변화)

  • Kim, Jai-Ho;Park, Jin-Ho;Yu, I-Sang;Jang, Ji-Hun;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.35-38
    • /
    • 2011
  • Damping characteristic according to acoustic cavity's geometries was investigated to control the high frequency combustion instability occurring in the Liquid Rocket Combustion Chamber by experimental test and linear analysis. Its diameter was determined as a design parameter and its orifice length and diameter were appointed as fixed parameter in this study. Result shows that the damping capacity has been almost constant through all the experiments despite using the same orifice and helmholtz resonators which have different volume.

  • PDF