• 제목/요약/키워드: Rock specimen

Search Result 208, Processing Time 0.026 seconds

The basic study about streaming potential generated by specimen fracture (시료 파괴 시 발생하는 SP에 관한 기초 연구)

  • Kim, Jong-Wook;Cho, Sung-Jun;Park, Sam-Gyu;Sung, Nark-Hoon;Song, Young-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.291-296
    • /
    • 2007
  • We measured potential waveform of load, displacement, micro electric signal generated by rock and mortar fracture using PXI A/D Converter. The rock type used for measurement was used granite, limestone and sandstone, and mortar specimen. we made measuring equipment of physical properties to confirm basic information of physical properties, measured physical properties of rock engineering, electric resistivity and seismic velocity. Potential waveform system was built using PXI A/D Converter and measured potential waveform of load, displacement, micro-electric signal generated using this during uniaxial compressive test by the specimen finished such test of physical properties. Using the saturated rock and mortar specimen, micro electric signal increased, and It didn't increase a signal in dried rock and mortar specimen according as load and strain rate increases. But signal also increased in saturated or dried specimen in case of sandstone. It was possible to check the close correlation relationship the signal and fracture behavior by a compressive load as the signal of fracture position was increased bigger than the other position. It was also possible to check the correlation relationship between physical properties and micro geo-electric signal.

  • PDF

Study on Non-destructive Assessment of Compressive Strength of Rock Using Impact Force Response Signal (타격력 응답신호를 이용한 암석의 비파괴 압축강도 산정방법에 관한 연구)

  • Son, Moorak;Seong, Jinhyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.10
    • /
    • pp.13-19
    • /
    • 2022
  • This paper is to provide the results of usability of the impact force response signal induced from initial and successive rebound impacting a rock specimen for assessing the compressive strength of rock non-destructively. For this study, a device was devised for impacting a rock specimen and a system for measuring the impact force was set up. The impact was carried out by an initial rotating free falling impact and following repetitive impacts from the rebound action which eventually disappears. Three different kinds of rock specimen were tested and an impact force response signal was measured for each test specimen. The total impact force signal energy which is assessed from integrating the impact force response signal induced from initial and rebound impacts was compared with the directly measured compressive strength for each rock specimen. The comparison showed that the total impact force signal energy has a direct relationship with the directly measured compressive strength and the results clearly indicated that the compressive strength of rock can be assessed non-destructively using total impact force signal energy.

Dog bone shaped specimen testing method to evaluate tensile strength of rock materials

  • Komurlu, Eren;Kesimal, Ayhan;Demir, Aysegul Durmus
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.883-898
    • /
    • 2017
  • To eliminate the holding and gluing problems making the direct tensile strength test hard to be applied, a new method of testing specimens prepared using lathe machine to make the dog bone shape is assessed whether it could be applied to determine accurate direct tensile strength values of rock materials. A series of numerical modelling analyses was performed using finite element method to investigate the effect of different specimen and steel holder geometries. In addition to numerical modelling study, a series of direct tensile strength tests was performed on three different groups of rock materials and a rock-like cemented material to compare the results with those obtained from the finite element analyses. A proper physical property of the lathed specimens was suggested and ideal failure of the dog bone shaped specimens was determined according to the results obtained from this study.

Measurement of rock fracture toughness under mode I, II & mixed-mode conditions by using disc-typed specimens (인장, 전단 및 혼합모드에서 디스크 시험편을 이용한 암석의 파괴인성 측정에 관한 연구)

  • 장수호;이정인
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.315-327
    • /
    • 1999
  • Rock fracture mechanics has been widely applied to blasting, hydraulic fracturing, rock slope and many other practical problems in rock engineering. But a measuring method for the fracture toughness of rock, one of the mort important parameters in fracture mechanics as an intrinsic property of rock, has not been yet well established. To obtain mode I rock fracture toughness, the more favorable disc-typed specimens such as CCNBD, SCB, chevron-notched SCB and BDT were used in this study. Rock fracture toughness under mixed-mode and mode II conditions was measured by using the STCA applied to the CCNBD specimen. Size effects such as specimen thickness, diameter and notch length on fracture toughness were investigated. From the mixed-mode results, fracture envelops were obtained by applying various regression curves. The mixed-mode results were also compared with three mixed-mode failure criteria. In each fracture toughness test, acoustic emission was measured to get the data for determining the load levels of different crack propagation patterns.

  • PDF

Study on the Prediction of the Occurrence and Distribution of the Microcracks in Rock (암석의 미세균열의 발달과 분포의 예측방법에 관한 연구)

  • 백환조;김덕현;최성범
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.226-233
    • /
    • 1998
  • Microcracks in rock materials, whether natural or induced, provide useful information on the engineering performance of in situ rockmasses. A population of preferentially oriented microcracks has observable effects on the physical properties of a rockmass, but their effects may not be evident if the rock material is highly anisotropic due to other causes. An experimental program was undertaken to investigate the effect of rock fabrics on the physical properties of rock materials. In this study, anisotropy in the circumferential wave velocity and the direction of induced fractures under axial point loading were measured. Rock specimens (NX-size) of the leucocractic Pocheon granite were cored from rock blocks, retaining the relative directions of each specimen. Another set of specimens was prepared from the rock cores of the same meterial, obtained in the field. The master orientation line (MOL) was set to be the representative direction of the microcracks in the specimen. Variation of the circumferential wave velocity of each specimen was then measured along the core, keeping the MOL as reference. The direction of the minimum wave velocity was nearly perpendicular to the direction of the MOL. Coring of smaller-sized (EX-size), concentric specimens from the NX specimens were then followed, and axial point loading was applied. The direction of induced fractures due to axial point loading was closely related to the MOL direction, confirming the prior test result.

  • PDF

Calculation Method for Nominal Area of Rock Core Specimen During Direct Shear Test (암석코어시편의 절리면 직접전단시험을 위한 겉보기 면적 계산방법)

  • Kang, Hoon;Park, Jung-Wook;Park, Chan;Oh, Tae-Min;Cho, Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.551-558
    • /
    • 2020
  • This note presents the calculation of nominal area for rock core specimen under direct shear testing condition. The initial nominal area was assumed as ellipsoid, and the equations for calculating the nominal area are derived. The normalized shear displacement and normalized nominal area have an identical relationship regardless of the ellipsoid shape. New testing constants and the generalized method were suggested to calculate the decrease of the nominal area. The method was applied to calculate the direct shear testing data and the changes of result were discussed.

Direct and indirect methods for determination of mode I fracture toughness using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • In this paper, mode I fracture toughness of rock was determined by direct and indirect methods using Particle Flow Code simulation. Direct methods are compaction tension (CT) test and hollow centre cracked quadratic sample (HCCQS). Indirect methods are notched Brazilian disk (NBD) specimen, the semi-circular bend (SCB) specimen, hollow centre cracked disc (HCCD), the single edge-notched round bar in bending (SENRBB) specimen and edge notched disk (END). It was determined that which one of indirect fracture toughness values is close to direct one. For this purpose, initially calibration of PFC was undertaken with respect to data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, the simulated models in five introduced indirect tests were cross checked with the results from direct tests. By using numerical testing, the failure process was visually observed. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Mode I fracture toughness of rock in direct test was less than other tests results. Fracture toughness resulted from semi-circular bend specimen test was close to direct test results. Therefore semi-circular bend specimen can be a proper test for determination of Mode I fracture toughness of rock in absence of direct test.

Numerical Simulation of Tensile Strength Test by Ring-type Specimen (링 시험편에 의한 인장강도시험의 수치해석)

  • 진연호;양형식;박철환
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.63-66
    • /
    • 2000
  • Stress variation due to size variation and the eccentricity of ring type tensile specimen was analyzed by FLAC program. To get the stable tensile strength the ratio of inner to outer ring diameter should be within a certain range. Diameter ratio of 0.3 was suggested to be adequate. It seemed to be difficult to determine the tensile strength because of stress distortion if eccentricity exceeded home limit. To limit the error in 10%, lateral and axial eccentricity was analyzed to be in the limits of 3% and 10%, respectively.

  • PDF

Evaluation and Interpretation of the Fracture Toughness of Rocks

  • Baek, Hwanjo
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1996.03a
    • /
    • pp.1-10
    • /
    • 1996
  • Fracture toughness of rock materials, which generally violate the fundamental assumptions of LEFM, often depends on the specimen size and test method employed. Hence, a standardized procedure for testing and data interpretation for determining fracture toughness of rock materials is required. Special attention has been given by the International Society for Rock Mechanics (ISRM) to the difficulties in obtaining true fracture mechanics parameters for the wide variety of rock materials. (omitted)

  • PDF

The influence of dynamic force balance on the estimation of dynamic uniaxial compression strength (암석시료 내 동적하중 분배특성이 동적일축압축강도에 미치는 영향성에 관한 연구)

  • Oh, Se-Wook;Min, Gyeong-Jo;Park, Se-Woong;Park, Hoon;Suk, Chul-Gi;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.37 no.1
    • /
    • pp.14-23
    • /
    • 2019
  • It has been an always issue for the blasting or the impact analysis to consider the strength characteristics of the rock materials associate with loading rate dependency. Due to the nature of transient loading, the dynamic rock test requires a careful technique to achieve the stress equilibrium state of the specimen. In this study, to investigate the relationship between the rock dynamic strength and the stress equilibrium state, a series of dynamic uniaxial compression tests for Pocheon granite were performed. As a result, the unbalanced stress state on the specimen can lead to the premature failure on the specimen and the less estimation of dynamic strength characteristic as well as the overestimation of strain rate. Consequently, a careful consideration of rock fracture process to achieve the dynamic force balance on the specimen should be required to make an reasonable evaluation of rock dynamic strength.