• Title/Summary/Keyword: Rock mass characterization

Search Result 39, Processing Time 0.023 seconds

The use of digital imaging and laser scanning technologies in rock engineering

  • Kemeny John;Monte Jamie;Handy Jeff;Thiam Samba
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.35-41
    • /
    • 2003
  • Rock mass characterization is an integral part of rock engineering design. Much of the information for rock mass characterization comes from field fracture mapping and data collecting. This paper describes two technologies that can be used to assist with the field mapping and data collecting activities associated with rock mass characterization: digital image processing and 3D laserscanning. The basis for these techniques is described, as well as the results of field case studies and an analysis of the error in estimating fracture orientation.

  • PDF

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.

Characterization of the Spatial Distribution of Fracture System at the Rock Block Scale in the Granitic Area (화강암지역의 암반블록규모 단열체계 분포특성 연구)

  • 김경수;배대석;김천수
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.198-209
    • /
    • 2002
  • To assess deep geological environment for the research and development of hish-level radioactive waste disposal, six boreholes of 3" in diameter were installed in two granitic areas. An areal extent of the rock block scale in the study sites was estimated by the lineament analysis from satellite images and shaded relief maps. The characterization of fracture system developed in rock block scale was carried out based on the acoustic televiewer logging in deep boreholes. In the Yuseong site, the granite rock mass was divided into the upper and lower zones at around -160m based on the probabilistic distribution characteristics of the geometric parameters such as orientation, fracture frequency, spacing and aperture size. Since the groundwater flow is dependent on the fracture system in a fractured rock mass, the correlation of the fracture frequency and cumulative aperture size to the hydraulic conductivity was also discussed.

Effect of Rock Mass Properties on Coupled Thermo-Hydro-Mechanical Responses at Near-Field Rock Mass in a Heater Test - A Benchmark Sensitivity Study of the Kamaishi Mine Experiment in Japan

  • Hwajung Yoo;Jeonghwan Yoon;Ki-Bok Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.23-41
    • /
    • 2023
  • Coupled thermo-hydraulic-mechanical (THM) processes are essential for the long-term performance of deep geological disposal of high-level radioactive waste. In this study, a numerical sensitivity analysis was performed to analyze the effect of rock properties on THM responses after the execution of the heater test at the Kamaishi mine in Japan. The TOUGH-FLAC simulator was applied for the numerical simulation assuming a continuum model for coupled THM analysis. The rock properties included in the sensitivity study were the Young's modulus, permeability, thermal conductivity, and thermal expansion coefficients of crystalline rock, rock salt, and clay. The responses, i.e., temperature, water content, displacement, and stress, were measured at monitoring points in the buffer and near-field rock mass during the simulations. The thermal conductivity had an overarching impact on THM responses. The influence of Young's modulus was evident in the mechanical behavior, whereas that of permeability was noticed through the change in the temperature and water content. The difference in the THM responses of the three rock type models implies the importance of the appropriate characterization of rock mass properties with regard to the performance assessment of the deep geological disposal of high-level radioactive waste.

Estimation of Discontinuity Orientations in Excavation Faces (굴착면에서의 분리면방향성 평가)

  • Ro, Byung-Don;Han, Byeong-Hyeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1484-1489
    • /
    • 2005
  • An inhomogeneous and anisotropic rock has different properties at different location. Thus, this refers to any of the properties which we may be measuring. There are two concepts of rock mass, namely, CHILE(Continuous, Homogeneous, Isotropic, Linear Elastic) material and DIANE(Discontinuous, Inhomogeneous, Anisotropic, Non-linear Elastic) rock. The former is essentially the properties of intact rock, the latter is essentially the properties governed by the structure of rock. In geotechnical aspect, the most important parameter is strength of rock or rock mass. In particular, characteristics of strength of rock mass depend upon the orientation of discontinuities And this orientation of discontinuities has different properties at different direction of excavation. Therefore, it needs for characterization of different properties of discontinuity orientation against different direction of excavation.

  • PDF

Modeling large underground structures in rock formations

  • e Sousa, Luis Ribeiro;Miranda, Tiago
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.49-64
    • /
    • 2011
  • A methodology for jointed rock mass characterization starts with a research based on geological data and tests in order to define the geotechnical models used to support the decision about location, orientation and shape of cavities. Afterwards a more detailed characterization of the rock mass is performed allowing the update of the geomechanical parameters defined in the previous stage. The observed results can be also used to re-evaluate the geotechnical model using inverse methodologies. Cases of large underground structures modeling are presented. The first case concerns the modeling of cavities in volcanic formations. Then, an application to a large station from the Metro do Porto project developed in heterogeneous granite formations is also presented. Finally, the last case concerns the modeling of large cavities for a hydroelectric powerhouse complex. The finite element method and finite difference method software used is acquired from Rocscience and ITASCA, respectively.

Review of the Synthetic Rock Mass Approach (합성암반체 접근법에 대한 고찰)

  • Park, Chul-Whan;Synn, Joong-Ho;Park, Eui-Seop
    • Tunnel and Underground Space
    • /
    • v.17 no.6
    • /
    • pp.438-447
    • /
    • 2007
  • This technical report is to introduce the research on SRM (Synthetic Rock Mass) which was presented in 2007 ISRM Congress at Lisbon by Prof, Fairhurst who speak with emphasis on its importance and potential in rock engineering. The Synthetic Rock Mass approach to jointed rock mass characterization (Pierce et al. 2007) is reviewed relative to existing empirical approaches and current understanding of jointed rock mass behaviour. The review illustrates how the key factors affecting the mechanical behaviour of jointed rock masses may be considered and demonstrates that the SRM approach constitutes a significant step forward in this field. This technique, based on two well-established methods, Bonded Particle Modelling in PFC-3D (Potyondy and Cundall, 2004) and Discrete Fracture Network simulation, employs a new sliding joint model that allows for large rock volumes containing thousands of pre-existing joints to be subjected to any non-trivial stress path. Output from SRM testing includes rock mass brittleness and strength, evolution of the full compliance matrix and primary fragmentation.

Analysis of Joint Characteristics and Rock Mass Classification using Deep Borehole and Geophysical Logging (심부 시추공 회수코어와 물리검층 자료를 활용한 절리 및 암반등급 평가)

  • Dae-Sung Cheon;Seungbeom Choi;Won-Kyong Song;Seong Kon Lee
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.330-354
    • /
    • 2024
  • In site characterization of high-level radioactive waste, discontinuity(joint) distribution and rock mass classification, which are key evaluation parameters in the rock engineering field, were evaluated using deep boreholes in the Wonju granite and Chuncheon granite, which belong to Mesozoic Jurassic era. To evaluate joint distribution characteristics, fracture zones and joint surfaces extracted from ATV data were used, and major joint sets were evaluated along with joint frequency according to depth, dip direction, and dip. Both the Wonju and Chuncheon granites that were studied showed a tendency for the frequency of joints to increase linearly with depth, and joints with high angles were relatively widely distributed. In addition, relatively large amounts of weathering tended to occur even in deep depth due to groundwater inflow through high-angle joints. RQD values remained consistently low even at considerable depth. Meanwhile, joint groups with low angles showed different joint characteristics from joint sets with high angles. Rock mass classification was performed based on RMR system, and along with rock mass classification for 50 m intervals where uniaxial compressive strength was performed, continuous rock mass classification according to depth was performed using velocity log data and geostatistical techniques. The Wonju granite exhibited a superior rock mass class compared to the Chuncheon granite. In the 50 m interval and continuous rock mass classification, the shallow part of the Wonju granite showed a higher class than the deep part, and the deep part of the Chuncheon granite showed a higher class than the shallow part.

Characterization of Discontinuity Orientation based on Direction of Excavation (굴착방향에 따른 불연속면 방위각의 특성화)

  • Ro, Byung-Don;Han, Byeung-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1861-1863
    • /
    • 2007
  • In rock mass, great many discontinuity exists that is caused to various factors of formation. But these are parted to some groups by specific category, so called these as discontinuity set. This discontinuity set has unique special characteristics in original rock mass, but for the moment, differ the special quality if external force such as digging etc. acts, specially, change of stress condition. Also, geometrical relation change between discontinuity orientation and direction of excavation various characteristic is seen. Therefore, we introduce here the useful chart that can do specification these relation.

  • PDF

Analysis of Parameters Affecting LiDAR Intensity on Rock (암석에 대한 라이다 반사강도의 영향 인자 분석)

  • Kim, Moonjoo;Lee, Sudeuk;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.417-431
    • /
    • 2020
  • In this study, a fundamental investigation was made on how to use LiDAR technology to determine the degree of weathering and alteration of rock mass. The purpose of the study was to identify the affecting parameters to LiDAR intensity and to quantitatively assess the relations among them through laboratory-scale experiment. A few potential affecting parameters were selected including scanning distance, incidence angle, surface roughness, surface color, mineral composition, and water saturation. In the experiment, FARO LiDAR unit was used for twelve different types of specimen. It was observed that the intensity was affected by, in the order of importance, surface color, incidence angle, scanning distance, property of rock, water condition, and surface roughness.