DOI QR코드

DOI QR Code

Analysis of Parameters Affecting LiDAR Intensity on Rock

암석에 대한 라이다 반사강도의 영향 인자 분석

  • Kim, Moonjoo (Department of Energy Systems Engineering, Seoul National University) ;
  • Lee, Sudeuk (Department of Energy Systems Engineering, Seoul National University) ;
  • Jeon, Seokwon (Department of Energy Systems Engineering, Seoul National University)
  • 김문주 (서울대학교 에너지시스템공학부) ;
  • 이수득 (서울대학교 에너지시스템공학부) ;
  • 전석원 (서울대학교 에너지시스템공학부)
  • Received : 2020.08.19
  • Accepted : 2020.08.26
  • Published : 2020.08.31

Abstract

In this study, a fundamental investigation was made on how to use LiDAR technology to determine the degree of weathering and alteration of rock mass. The purpose of the study was to identify the affecting parameters to LiDAR intensity and to quantitatively assess the relations among them through laboratory-scale experiment. A few potential affecting parameters were selected including scanning distance, incidence angle, surface roughness, surface color, mineral composition, and water saturation. In the experiment, FARO LiDAR unit was used for twelve different types of specimen. It was observed that the intensity was affected by, in the order of importance, surface color, incidence angle, scanning distance, property of rock, water condition, and surface roughness.

이 연구에서는 라이다(LiDAR) 반사강도를 이용하여 암반 풍화도 및 변질도를 산정하는 작업의 기초연구를 진행하였다. 실내 시험을 통하여 라이다 반사강도에 직접적으로 영향을 미치는 인자와 그 영향 정도를 정량적으로 고찰하고자 하였다. 영향 인자로는 주사거리, 입사각, 표면거칠기, 표면색상, 암석물성, 광물조성, 포화도를 선정하였다. 실험에서는 FARO 라이다 장비와 12가지 종류의 시험편을 사용하였다. 실험 결과 반사강도는 표면색상, 입사각, 주사거리, 암석물성, 포화도 혹은 표면습윤상태, 표면거칠기 순으로 영향을 크게 미치는 것으로 나타났다.

Keywords

References

  1. Bellian, J.A., Kerans, C. and Jennette, D.C., 2005. Digital outcrop models: applications of terrestrial scanning LIDAR technology in stratigraphic modeling. Journal of Sedimentary Research, 75(2), 166-176. https://doi.org/10.2110/jsr.2005.013
  2. Burton, D., Dunlap, D.B., Wood, L.J. and Flaig, P.P., 2011. LIDAR intensity as a remote sensor of rock properties. Journal of Sedimentary Research, 81(5), 339-347. https://doi.org/10.2110/jsr.2011.31
  3. Coren, F. and Sterzai, P., 2006. Radiometric correction in laser scanning. International Journal of Remote Sensing, 27(15), 3097-3104. https://doi.org/10.1080/01431160500217277
  4. Ercoli, L., Megna, B., Nocilla, A. and Zimbardo, M., 2013. Measure of a limestone weathering degree using laser scanner. International Journal of Architectural Heritage, 7(5), 591-607. https://doi.org/10.1080/15583058.2012.654893
  5. Fowler, A., France, J.I. and Truong, M., 2011. Applications of advanced laser scanning technology in geology. Riegl USA. http://www. rieglusa. com/pdf/applications-ofadvanced-laser-scanning-technology-in-geology-ananda-fowler-final. pdf. (May 20, 2020)
  6. Franceschi, M., Teza, G., Preto, N., Pesci, A., Galgaro, A. and Girardi, S., 2009. Discrimination between marls and limestones using intensity data from terrestrial laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6), 522-528. https://doi.org/10.1016/j.isprsjprs.2009.03.003
  7. Kaasalainen, S., Jaakkola, A., Kaasalainen, M., Krooks, A. and Kukko, A., 2011. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods. Remote Sensing, 3(10), 2207-2221. https://doi.org/10.3390/rs3102207
  8. Klise, K.A., Weissmann, G.S., McKenna, S.A., Nichols, E.M., Frechette, J.D., Wawrzyniec, T.F. and Tidwell, V.C., 2009. Exploring solute transport and streamline connectivity using LIDAR-based outcrop images and geostatistical representations of heterogeneity. Water Resources Research, 45(5), W05413. https://doi.org/10.1029/2008WR007500
  9. Lee, S.D. and Jeon, S.W., 2017. A Study on the Roughness Measurement for Joints in Rock Mass Using LIDAR. Tunnel and Underground Space, 27(1), 58-68. (in Korean) https://doi.org/10.7474/TUS.2017.27.1.058
  10. Pesci, A., Teza, G. and Ventura, G., 2008. Remote sensing of volcanic terrains by terrestrial laser scanner: preliminary reflectance and RGB implications for studying Vesuvius crater (Italy). Annals of Geophysics, 51(4), 633-653.
  11. Shin, J.I., 2007. Signal characteristics analysis and normalization of LIDAR intensity data. Master's Thesis, Inha University. (in Korean)
  12. Tan, K. and Cheng, X., 2015. Intensity data correction based on incidence angle and distance for terrestrial laser scanner. Journal of Applied Remote Sensing, 9(1), 094094. https://doi.org/10.1117/1.JRS.9.094094
  13. Wicaksana, Y., 2020. Prediction of rock cutting performance and abrasiveness considering dynamic properties at intermediate strain rate. Ph.D. Dissertation, Seoul National University.
  14. Yoo, W.K., Kim, J. and Kim, T.H., 2015. The relationship between weathering degree and reflectance of laser scanner considering RGB value, Journal of the Korea Academia Industrial Cooperation Society, 16(10), 7182-7188. (in Korean) https://doi.org/10.5762/KAIS.2015.16.10.7182