• Title/Summary/Keyword: Rock ground

Search Result 1,049, Processing Time 0.027 seconds

A Study The Structural Stability of the Fence Ohgokmun Soswaewon Factor Analysis (소쇄원 오곡문 담장의 구조적 안정에 미치는 요인 분석)

  • Jang, Ik-Sik;Jeon, Hyeong-Soon;Ha, Tae Ju;Lee, Jae-Keun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.4
    • /
    • pp.113-122
    • /
    • 2013
  • In this study, the traditional structure of the impact on the stability analysis. Korean traditional landscape architecture column space of stonework stable composition as the foundation of the fence for a long time been known to fall down and not maintained. The destination of research Ohgokmun Damyang Soswaewon fence which is in harmony with nature is one of the traditional structures that affect its shape without being kept so far came true. This includes our ancestral wisdom and that wisdom can guess guesswork. But I let the traditional reproduction incidence structures frequently. This deviation from the traditional method of construction application of shorthand stand. Thus, the subject of this study, the factors that do not fall down fences Ohgokmun solution is to indirectly gain the weak. In addition, epidemiological studies and the methods of calculation of the inferred physical examination, the results of the analysis were derived through the following. First, the internal factors of the fence Ohgokmun constituting the structural member and the coupling of the scheme. 1) based on stable ground. Greater role in the country rock The fact that the settlement will have no symptoms. 2) to minimize the friction caused by hydrological water to remove the two-pronged process through stone work building form and menu sustaining power in hydrology and flooding made against the bypass channel. 3) due to the load bearing capacity and durability to withstand the strength of the material and the construction of structures in the form of a dispersion of power between each individual to maximize the process of getting traction was applied. Second, external factors Ohgokmun fence the results obtained through the calculation of the dynamics of repair, is greatly affected by the wind and the water gate of the fence, but the action of the structural stability of the lack of power that hurt enough conclusion. In this study, the results of the structure of internal and external influence as well through the structure can be viewed as composed consisting. However, over the next follow-up in terms of climate and environmental factors due to the fact that the fall might.

Implication and Its Meaning Contact of Gwangje-jeong's Place Transmission (광제정(光霽亭) 장소 전승의 함의와 의미맥락)

  • Rho, Jae-Hyun;Lee, Suk-Woo;Lee Jung-Han;Jung, Kyung-Suk;Kim, Young-Suk
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.3
    • /
    • pp.40-51
    • /
    • 2011
  • The purpose of the study was to understand the symbol and locational meanings in building and relocating Gwangje-jeong(光霽亭) through the analysis and interpretation on the construction background, history, the location and its characteristics. Concerning physical environment, human activities, the symbol and meanings of the formal Gwangje-jeong site and the present location, the study was concluded about the site and its meaning of tradition as following. Gwangje, the name of the pavilion, represents the fidelity of Maedang(梅堂) Yangdon(楊墩) who refused as Seonbee(a man of virtue) to be tainted with the corrupt world, which was related with the situation at that time. It implies Maedang's feeling of realizing Noojeongjeyong(樓亭題詠) of Gwangje-jeong along with the high spirit of Gwangpoongjewol(光風霽月). According to the record about rebuilding Gwangje-jeong, Maedang was the very person who planted plum flowers at the pavilion and put up the tablet of its name, Gwangje. Even after his death, Gwangje-jeong was the symbol indicating Yangdon, given the triple high ground and the planting of plum flowers. Also, Sookho(宿虎) town at the entrance of Gwangje-jeong and Bokhoam(伏虎巖: a rock) at the right side of the pavilion signifies the location for praising Maedang Yangdon, and the Yangjipha's Oensi(五言詩: five words verse) engraved on the rock gives a good description about the place, Agyesa that worshiped Yangdon. As Agye-Sa(阿溪祠) where Yangdon was worshiped and praised had been abolished in the 5th year under the Kojong's reign(1868), the spirit praising Maedang had finally been used for the relocation of Gwangje-jeong. Despite the relocation of Gwangje-jeong, the old Gwangje-jeong site has remained at least for 359years at Hucheonli, and its surroundings have maintained the name 'Gwangje' as the front place name morpheme, for example, 'Gwangje-jeong,' 'Gwangje Town,' 'Gwangje Bridge' and 'Gwangje Creek,' for symbolizing the praising of Maedang. Gwangje-jeong, as the center place of solidarity among Namwon Yang's family clan, has been able to maintain its symbol and meanings in spite of relocation, mainly because of the fellowship among the descendants, family clan and alumni who respected virtuous achievements of ancestors and shared the agony of the time. In addition, the symbolism has been preserved since the spirit of Gwangpoonjewol of Yangdon and his high character were cherished along with the spirit of Bongseon(奉先) that inherited and kept virtuous achievements of ancestors.

Spectral Induced Polarization Characteristics of Rocks in Gwanin Vanadiferous Titanomagnetite (VTM) Deposit (관인 함바나듐 티탄철광상 암석의 광대역 유도분극 특성)

  • Shin, Seungwook
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.194-201
    • /
    • 2021
  • Induced polarization (IP) effect is known to be caused by electrochemical phenomena at interface between minerals and pore water. Spectral induced polarization (SIP) method is an electrical survey to localize subsurface IP anomalies while injecting alternating currents of multiple frequencies into the ground. This method was effectively applied to mineral exploration of various ore deposits. Titanomagnetite ores were being produced by a mining company located in Gonamsan area, Gwanin-myeon, Pocheon-si, Gyeonggi-do, South Korea. Because the ores contain more than 0.4 w% vanadium, the ore deposit is called as Gwanin vanadiferous titanomagnetite (VTM) deposit. The vanadium is the most important of materials in production of vanadium redox flow batteries, which can be appropriately used for large-scale energy storage system. Systematic mineral exploration was conducted to identify presence of hidden VTM orebodies and estimate their potential resources. In geophysical exploration, laboratory geophysical measurement of rock samples is helpful to generate reliable property models from field survey data. Therefore, we performed laboratory SIP data of the rocks from the Gwanin VTM deposit to understand SIP characteristics between ores and host rocks and then demonstrate the applicability of this method for the mineral exploration. Both phase and resistivity spectra of the ores sampled from underground outcrop and drilling cores were different of those of the host rocks consisting of monzodiorite and quartz monzodiorite. Because the phase and resistivity at frequencies below 100 Hz are mainly dependent on the SIP characteristics of the rocks, we calculated mean values of the ores and the host rocks. The average phase values at 0.1 Hz were ores: -369 mrad and host rocks: -39 mrad. The average resistivity values at 0.1 Hz were ores: 16 Ωm and host rocks: 2,623 Ωm. Because the SIP characteristics of the ores were different of those of the host rocks, we considered that the SIP survey is effective for the mineral exploration in vanadiferous titanomagnetite deposits and the SIP characteristics are useful for interpreting field survey data.

Wetting-Induced Collapse in Fill Materials for Concrete Slab Track of High Speed Railway (고속철도 콘크리트궤도 흙쌓기재료의 Wetting Collapse에 관한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Im, Eun-Sang;Shin, Dong-Hoon;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.79-88
    • /
    • 2008
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in bout 400 km section in 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350 km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. In spite of little study for this wetting collapse problem, it has been recognized that the compressibility of compacted sands, gravels and rockfills exhibit low compressibility at low pressures, but there can be significant compression at high pressures due to grain crushing (Marachi et al. 1969, Nobari and Duncan 1972, Noorany et al. 1994, Houston et al. 1993, Wu 2004). The characteristics of compression of fill materials depend on a number of factors such as soil/rock type, as-compacted moisture, density, stress level and wetting condition. Because of the complexity of these factors, it is not easy to predict quantitatively the amount of compression without extensive tests. Therefore, in this research I carried out the wetting collapse tests, focusing on various soil/rock type, stress levels, wetting condition more closely.

Study on the Characteristics of the Hibernating Site for the Released Asiatic Black Bear in Jirisan National Park (지리산국립공원에 방사한 반달가슴곰 동면장소 특성 연구)

  • Kim, Bo-Hyun;Yang, Doo-Ha;Jeong, Woo-Jin;Lee, Bae-Geun;Skripova, K.V.;Kotlyar, A.K.
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.4
    • /
    • pp.347-355
    • /
    • 2007
  • Asiatic black Bear(Ursus thibetanus ussuricus) cubs aged one or two were introduced from Russia(Primosky krai) and North Korea for reinforcement of the bear population and they were released to grow wild in Jirisan National Park. We did research on the characteristics of the denning sites of the Asiatic black cubs, which were released before, from Oct. 2004 to Apr. 2006, and the results were as follows: The released bears hibernated in three types of dens,; tree hollows, rock hollows or ground nests. The hibernating sites were dominated by a community of oak trees and its location was at an average of $923{\pm}221m$ height above the sea level ; the average slope incline was $25.9{\pm}7.9^{\circ}$, and the average denning duration was $98{\pm}9$ days. It was analyzed that the cubs' denning site was $2.8{\pm}2.8km$, on an average, far from the release point; $2.0{\pm}0.9km$ far from villages; $1.9{\pm}1.7km$ far from park inspection trails, and $1.9{\pm}1.0km$ on the average far from a driveway. It is assumed that environmental attributes of the denning sites were closely correlated to those of the release points.

Assessment of Response Spectrum by Dynamic Centrifuge Test for the Pile Foundation into the Clay (동적 원심모형실험에 의한 점성토 지반에 근입된 말뚝지지 기초의 응답 스펙트럼 분석)

  • Kim, Sang-Yeon;Park, Jong-Bae;Park, Yong-Boo;Kim, Dong-Soo
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • Site coefficient and amplification factor of current domestic Seismic Design Code (KBC-2009) have no consideration for the domestic ground condition in which the base rock is normally placed within 30m form the surface. Accordingly, in this study dynamic centrifugal test and analysis for pile foundation into clay were achieved. and the response spectrums of free surface and basement were compared with each other. Within the period 1sec., the measured spectral acceleration of free surface and basement was bigger than the design spectral acceleration of SC and SD site. However the measured spectral acceleration of free surface and basement for the period over 1.5sec. was smaller than the design spectral acceleration of SC site. There was no severe difference of spectral acceleration according to the upper structure, embedded depth of foundation and free surface conditions. Consequently, normal domestic apartment housing for the period range over 1.5sec. could be design more economically applying these test result.

Engineering Properties of Mylonite in the Youngju Area (영주지역 압쇄암의 공학적 특성 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Yang, Tae-Sun;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.35-43
    • /
    • 2011
  • The area to be studied is the place where the main line rail way will be constructed in accordance with the scheduled construction project of Yeongju dam, and is a fold and mylonite zone over several km that is formed by ductile-shearing effect. The ductile shear zone, which has been transformed by faulting for long geological time, shows a complicated geological structure. Due to the recrystallization of mineral caused by transformation in deep underground (>8km), a mylonite zone with lamellar structure has properties distinguished from other fault zones formed by transformation near earth surface <2km). To see the properties of mylonite, this study analyzed the transformation rate of sample rocks and the shape of constriction structure accompanied with transformation. While the transformation of fault zone shows a round oblate, the mylonite zone shows a prolate form. Transformation rate in fault zone was measured to be less than 1.2 compared to the state before transformation while the measured rate in mylonite zone was 2.5 at most. Setting the surface of discontinuity as the base, the unconfined compressive strength of slickenside can be categorized in sedimentary rocks, and a change of strength was observed after water soaking over certain time. Taking into account that the weathering resistance of the rock based on mineral and chemical organization is relatively higher, its engineering properties seems to result from the shattered crack structure by crushing effect. When undertaking tunnel construction in mylonite zone, there should be a special care for the expansion of shattered cracks or the fall of strength by influx of ground water.

Study on Design Method of Tunnel-type Ammunition Storage Chamber (터널형 탄약고의 격실 설계 방법에 대한 연구)

  • Park, Sangwoo;Baek, Jangwoon;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.279-287
    • /
    • 2020
  • Recently, the demand for underground-type ammunition storage facilities has increased. Comparing with a ground-type ammunition storage facility, the underground-type ammunition storage facility can decrease the standard of safety distance because fragment and blast wave can be locked in the rock formation. However, the absence of a design method on the underground-type ammunition storage chamber became a major setback for the construction promotion. In this study, the process for designing an overall configuration of the underground-type ammunition storage facility was provided. First, the determination method for configuration and number of the chamber was developed by performing the ammunition storage simulation. Then, a tunnel (i.e., transfer channel for vehicles) and designed chambers can be arranged on the basis of safety distance standard. The safety distance standard also should be considered for determining the location and the size of entrances because of the blast wave and fragment effect at the entrances when an explosion is generated inside a chamber. In addition, considerations on the design for the waterproof and the drainage of subsurface water were analyzed through construction cases. Finally, an example of designing underground-type ammunition storage chambers was provided in order to verify the developed design process.

Detection of Groundwater Table Changes in Alluvium Using Electrical Resistivity Monitoring Method (전기비저항 모니터링 방법을 이용한 충적층 지하수위 변동 감지)

  • 김형수
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.139-149
    • /
    • 1997
  • Electrical resistivity monitoring methods were adopted to detect groundwater table change in alluvium. Numerical modelling test using finite element method(FEM) and field resisfivity monitoring were conducted in the study. The field monitoring data were acquired in the alluvium deposit site in Jeong-Dong Ri, Geum River where pumping test had been conducted continuously for 20 days to make artificial changes of groundwater table. The unit distance of the electrode array was 4m and 21 fixed electrodes were applied in numerical calculation and field data acquisition. "Modified Wenner" and dipole-dipole array configurations were used in the study. The models used in two-dimensional numerical test were designed on the basis of the simplifving geological model of the alluvium in Jeong Dong Ri, Geum River. Numerical test results show that the apparent resistivity pseudosections were changed in the vicinity of the pootion where groundwater table was changed. Furthermore, there are some apparent resistivity changes in the boundary between aquifer and crystalline basement rock which overlays the aquifer. The field monitoring data also give similar results which were observed in numerical tests. From the numerical test using FEM and field resistivity monitoring observations in alluvium site of Geum River, the electrical monitoring method is proved to be a useful tool for detecting groundwater behavior including groundwater table change. There are some limitations, however, in the application of the resistivity method only because the change of groundwater table does not give enough variations in the apparent resistivity pseudosections to estimate the amount of groundwater table change. For the improved detection of groundwater table changes, it is desirable to combine the resistivity method with other geophysical methods that reveal the underground image such as high-resolution seismic and/or ground penetrating radar surveys.

  • PDF

Application of Statistical Analysis to Analyze the Spatial Distribution of Earthquake-induced Strain Data (지진유발 변형률 데이터의 분포 특성 분석을 위한 응용통계기법의 적용)

  • Kim, Bo-Ram;Chae, Byung-Gon;Kim, Yongje;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.353-361
    • /
    • 2013
  • To analyze the distribution of earthquake-induced strain data in rock masses, statistical analysis was performed on four-directional strain data obtained from a ground movement monitoring system installed in Korea. Strain data related to the 2011 Tohoku-oki earthquake and two aftershocks of >M7.0 in 2011 were used in x-MR control chart analysis, a type of univariate statistical analysis that can detect an abnormal distribution. The analysis revealed different dispersion times for each measurement orientation. In a more comprehensive analysis, the strain data were re-evaluated using multivariate statistical analysis (MSA) considering correlations among the various data from the different measurement orientations. $T_2$ and Q-statistics, based on principal component analysis, were used to analyze the time-series strain data in real-time. The procedures were performed with 99.9%, 99.0%, and 95.0% control limits. It is possible to use the MSA data to successfully detect an abnormal distribution caused by earthquakes because the dispersion time using the 99.9% control limit is concurrent with or earlier than that from the x-MR analysis. In addition, the dispersion using the 99.0% and 95.0% control limits detected an abnormal distribution in advance. This finding indicates the potential use of MSA for recognizing abnormal distributions of strain data.