• Title/Summary/Keyword: Rock excavation

Search Result 685, Processing Time 0.023 seconds

A Numerical Analysis Study for the Prediction of Convergences and Characteristics of Subsidence behavior in Shallow, Wide Tunnel Excavation (천층 광폭터널의 내공변위 및 침하거동특성 예측을 위한 수치해석적 연구)

  • 문승백;송승곤;양형식;전양수;한공창
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.20-29
    • /
    • 2001
  • Final convergence of tunnel crown due to excavation have been well predicted by regression analysis which is expressed as a function of convergence curve on a time and distance dependent. In this study, the validity of the equations for shallow, wide tunnel was investigated by measurement and numerical analysis. Studied tunnel(Sansoo Tunnel) is located at the boundary of downtown and mountain park. Exponential predictions equation was better coincided with measured data than fractional equation for studied tunnel, although the ground was expected to be elasto-plastic. This is because weathered rock ground is changed elasto-plastic ground into elastic ground by multi-steel grouting and forepoling.

  • PDF

Development of Stage-Cut Method for medium depth Shaft in Korea (국내 중저심도(20~80m) 수직구에 적합한 Stage-Cut 공법 개발)

  • Hong, Chang-Soo;Lee, Ji-Su;Hwang, Dae-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1522-1529
    • /
    • 2009
  • When a shaft is excavated in Korea, the mechanized method such as RBM(Raise Boring Machine) or RC(Raise Climber) is used independently of depth. But usually, the mechanized method is useful for the deep depth. On the contrary, when the depth of shaft is short, the cost of excavation increase. So in the case of shaft constructon less than 100m, we need to consider more suitable method of shaft construction such as Stage-cut which is one of blasting methods. Stage-Cut is widely used in the field of shaft construction in Japan as a tool of rock excavation. The main purpose of this study is to provide technical guidance for design and construction of shafts in rock, using Stage-cut method which is suitable for 20m~80m depth shaft. In this study, Blasting tests was performed in field, according to rock classification. Finally, the stage-cut method which is suitable for the geology of Korea was developed.

  • PDF

A Study on Notch Bit System for Controlling Blast Vibration and Over-break in Rock Mass (발파공해 해소 및 여굴 최소화를 위한 선균열 암굴착 노치장비 개발에 관한 연구)

  • Jeong, Dong-Ho;Moon, Sang-Jo;An, Dae-Jin;Jeong, Won-Joon;Kim, Eun-Kwan;Kim, Dong-Gyou
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.216-224
    • /
    • 2007
  • Blasting, using shock and dynamic energy of explosive, is very effective tunnel excavation method. But it had serious problem which is the blast vibration and over-break. In recent study, pre-cracked excavation method using notch hole reduced blast vibration and over-break in tunnel, so we performed study about developing notch bit system for making notch hole. In order to make notch hole effectively we had perform drilling experiments changing length and height of notch and in order to improve speed and precision of drilling we had developed notch bit system which consists of drilling bit, notch bit, adapter and notch guide.

Operating Process of Transverse Type Roadheader for Tunnel Excavation in Korea (횡방향 타입 로드헤더의 터널면 절삭공정 고찰)

  • Min-Gi Cho;Jung-Woo Cho;Mun-Gyu Kim;Jae-Hoon Jeong;Sung-Hyun Choi
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Roadheaders have been operated in the construction of Korean tunneling projects. The note introduces operation manual and management case of transverse type roadhead in a Korean tunneling site. The cutting and reaction forces of axial and transverse type cutting heads were qualitatively analyzed. The shaping surfaces of tunnel faces were visualized in both cases of fixed and auto-controlled telescopic cylinder conditions. Excavating with fixed cylinder, concave surfaces were shaped on tunnel face. The total processes of sumping and shearing were illustrated for excavating hard rock tunneling. The supplementary graphical explanations for total tunneling procedures in Korea were provided.

Study on the Effect of Bolt and Sub-bench on the Stabilization of Tunnel Face through FEM Analysis (FEM해석에 의한 막장볼트 및 보조벤치의 막장안정성 효과에 관한 연구)

  • Kim, Sung-Ryul;Yoon, Ji-Sun
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.427-435
    • /
    • 2008
  • In this paper, review was made for the excavation method and optimum bench length for unstable tunnel face in case of rock classification type V in order to make the best use of in-situ bearing capacity. 3D FEM analyses were performed to investigate the influences on the tunnel face and adjacent area with regard to the pattern and number of bolts when face bolts were used as a supplementary measure. As a result of this study, full section excavation method with sub-bench is effective in reducing the displacement greatly due to early section closure. Displacement-resistant effects in accordance with the bolting patterns are grid type, zig-zag type and then circular type in order of their effect. And horizontal extrusion displacement of tunnel face reduces as the number of bolts increase. A grid type face bolt covering $1.5m^2$ of tunnel face could secure the face stability in case of full section excavation method with sub-bench.

The effect of material behavior of blasted muck on the impact force applied on a protector (발파 버력의 재료거동이 프로텍터에 작용하는 충격하중에 미치는 영향)

  • Kim, Woong-Ku;Jin, Byeong-Moo;Baek, Ki-Hyun;Seo, Kyoung-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.261-275
    • /
    • 2011
  • To maintain the traffic flow during tunnel expansion, cars must be protected from falling rocks during excavation and to do so, a protector has to be installed inside the tunnel before beginning the excavation. In Korea, tunnel expansion by blasting rather than by mechanical excavation has been widely achieved. For this reason, a series of numerical analysis were performed to analyze the characteristics of impact load according to material behaviour of blasted rock by using Explicit FEA program. From the numerical results, it is found that the impact loads when rock is assumed as an elastic-plastic material appear to be only 7~12% compared with that when it is elastic.

Numerical Evaluation of Excavation Damage Zone Around Tunnels by Using Voronoi Joint Models (Voronoi 절리모델에 의한 터널 주변 굴착손상권(EDZ)의 해석 사례)

  • Park, Eui-Seob;Martin, C. Derek;Synn, Joong-Ho
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.328-337
    • /
    • 2008
  • Quantifying the extent and characteristics of the excavation damage zone(EDZ) is important for the nuclear waste industry which relies on the sealing of underground openings to minimize the risk for radionuclide transport. At AECL's Underground Research Laboratory(URL) the Tunnel Sealing Experiment(TSX) was conducted and the tunnel geometry and orientation relative to the stress field had been selected to minimize the potential for the development of an EDZ. The extent and characteristics of the EDZ was measured using velocity profiling and permeability measurements in radial boreholes. The results from this EDZ characterization are used in this paper to evaluate a modeling fir estimating the extent of the EDZ. The methodology used a damage model formulated in the Universal Distinct Element Code and calibrated to laboratory properties. This model was then used to predict the extent of crack initiation and growth around the TSX tunnel and the results compared to the measured damage. The development of the damage zone in the numerical model was found to be in good agreement with the field measurements.

Analysis of stability control and the adapted ways for building tunnel anchors and a down-passing tunnel

  • Xiaohan Zhou;Xinrong Liu;Yu Xiao;Ninghui Liang;Yangyang Yang;Yafeng Han;Zhongping Yang
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.395-409
    • /
    • 2023
  • Long-span suspension bridges have tunnel anchor systems to maintain stable cables. More investigations are required to determine how closely tunnel excavation beneath the tunnel anchor impacts the stability of the tunnel anchor. In order to investigate the impact of the adjacent tunnel's excavation on the stability of the tunnel anchor, a large-span suspension bridge tunnel anchor is utilised as an example in a three-dimensional numerical simulation approach. In order to explore the deformation control mechanism, orthogonal tests are employed to pinpoint the major impacting elements. The construction of an advanced pipe shed, strengthening the primary support. Moreover, according to the findings the grouting reinforcement of the surrounding rock, have a significant control effect on the settlement of the tunnel vault and plug body. However, reducing the lag distance of the secondary lining does not have such big influence. The greatest way to control tunnel vault settling is to use the grout reinforcement, which increases the bearing capacity and strength of the surrounding rock. This greatly minimizes the size of the tunnel excavation disturbance area. Advanced pipe shed can not only increase the surrounding rock's bearing capacity at the pipe shed, but can also prevent the tunnel vault from connecting with the disturbance area at the bottom of the anchorage tunnel, reduce the range of shear failure area outside the anchorage tunnel, and have the best impact on the plug body's settlement control.

Developement of back-analysis model for determining the mechanical properties of jointed rock (절리암반의 역학적 특성 분석을 위한 역해석 모델 개발)

  • Cho, Tae-Chin
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.19-29
    • /
    • 1996
  • Back analysis model, capable of calculating the mechanical properties and the in-situ stresses of jointed rock mass, was developed based on the inverse method using a continuum theory. Constitutive equation for the behavior of jointed rock contains two unknown parameters, elastic modulus of intact rock and stiffness of joint, hence algorithm which determines both parameters simultaneously cannot be established. To avoid algebraic difficulties elastic modulus of intact rock was assumed to be known, since the representative value of which would be quite easily determined. Then, the ratio ($\beta$) of joint stiffness to elastic modulus of intact rock was assigned and back analysis for the behavior of jointed rock was carried-out. The value $\beta$ was repeatedly modified until the elastic modulus from back analysis became very comparable to the predetermined value. The joint stiffness could be calculated by multipling the ratio $\beta$ to the final result of elastic modulus. Accuracy and reliability of back analysis procedure was successfully testified using a sample model simulating the underground opening in the jointed rock mass. Applicability of back analysis model for the underground excavation in practice was also verified by analyzing the mechanical properties of jointed rock in which underground oil storage cavern were under construction.

  • PDF

Defining the hydraulic excavation damaged zone considering hydraulic aperture change (수리적 간극변화를 고려한 수리적 굴착손상영역의 정의에 관한 연구)

  • Park, Jong-Sung;Ryu, Chang-Ha;Lee, Chung-In;Ryu, Dong-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.133-141
    • /
    • 2007
  • The excavation damaged zone (EDZ) is an area around an excavation where in situ rock mass properties, stress condition, displacement, groundwater flow conditions have been altered due to the processes induced by the excavation. Various studies have been carried out on EDZ, but most studies have focused on the mechanical bahavior of EDZ by in situ experiment. Even though the EDZ could potentially form a high permeable pathway of groundwater flow, only a few studies were performed on the analysis of groundwater flow in EDZ. In this study, the 'hydraulic EDZ' was defined as the rock zone adjacent to the excavation where the hydraulic aperture has been changed due to the excavation by using H-M coupling analysis. Fundamental principles of distinct element method (DEM) were used in the analysis. In the same groundwater level, the behavior of hydraulic aperture near the cavern was analyzed for different stress ratios, initial apertures, fracture angles and fracture spacings by using a two-dimensional DEM program. We evaluate the excavation induced hydraulic aperture change. Using the results of the study, hydraulic EDZ was defined as an elliptical shape model perpendicular to the joint.

  • PDF