• Title/Summary/Keyword: Rock Slope

Search Result 776, Processing Time 0.027 seconds

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works. (노천굴착에서 발파진동의 크기를 감량 시키기 위한 정밀파실험식)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.9 no.1
    • /
    • pp.3-13
    • /
    • 1991
  • The cautious blasting works had been used with emulsion explosion electric M/S delay caps. Drill depth was from 3m to 6m with Crawler Drill ${\phi}70mm$ on the calcalious sand stone (soft -modelate -semi hard Rock). The total numbers of test blast were 88. Scale distance were induced 15.52-60.32. It was applied to propagation Law in blasting vibration as follows. Propagtion Law in Blasting Vibration $V=K(\frac{D}{W^b})^n$ were V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites(m) W : Maximum charge per delay-period of eight milliseconds or more (kg) K : Ground transmission constant, empirically determind on the Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents where the quantity $\frac{D}{W^b}$ is known as the scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagorized in three groups. Cubic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge Per delay Plots of peak particle velocity versus distoance were made on log-log coordinates. The data are grouped by test and P.P.V. The linear grouping of the data permits their representation by an equation of the form ; $V=K(\frac{D}{W^{\frac{1}{3}})^{-n}$ The value of K(41 or 124) and n(1.41 or 1.66) were determined for each set of data by the method of least squores. Statistical tests showed that a common slope, n, could be used for all data of a given components. Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom over loom distance because the frequency is verified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30m ------- under l00m ${\cdots\cdots\cdots}{\;}41(D/sqrt[2]{W})^{-1.41}{\;}{\cdots\cdots\cdots\cdots\cdots}{\;}A$ Over 100m ${\cdots\cdots\cdots\cdots\cdots}{\;}121(D/sqrt[3]{W})^{-1.66}{\;}{\cdots\cdots\cdots\cdots\cdots}{\;}B$ where ; V is peak particle velocity In cm / sec D is distance in m and W, maximLlm charge weight per day in kg K value on the above equation has to be more specified for further understaring about the effect of explosives, Rock strength. And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF

Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel (긴구배수로 감세공의 Filp Bucket형 이용연구)

  • 김영배
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2206-2217
    • /
    • 1971
  • Spillway and discharge channel of reservoirs require the Control of Large volume of water under high pressure. The energies at the downstream end of spillway or discharge channel are tremendous. Therefore, Some means of expending the energy of the high-velocity flow is required to prevent scour of the riverbed, minimize erosion, and prevent undermining structures or dam it self. This may be accomplished by Constructing an energy dissipator at the downstream end of spillway or discharge channel disigned to dissipated the excessive energy and establish safe flow Condition in the outlet channel. There are many types of energy dissipators, stilling basins are the most familar energy dissipator. In the stilling basin, most energies are dissipated by hydraulic jump. stilling basins have some length to cover hydraulic jump length. So stilling basins require much concrete works and high construction cost. Flip bucket type energy dissipators require less construction cost. If the streambed is composed of firm rock and it is certain that the scour will not progress upstream to the extent that the safety of the structure might be endangered, flip backet type energy dissipators are the most recommendable one. Following items are tested and studied with bucket radius, $R=7h_2$,(medium of $4h_2{\geqq}R{\geqq}10h_2$). 1. Allowable upstream channel slop of bucket. 2. Adequate bucket lip angle for good performance of flip bucket. Also followings are reviwed. 1. Scour by jet flow. 2. Negative pressure distribution and air movement below nappe flow. From the test and study, following results were obtained. 1. Upstream channel slope of bucket (S=H/L) should be 0.25<H/L<0.75 for good performance of flip bucket. 2. Adequated lip angle $30^{\circ}{\sim}40^{\circ}$ are more reliable than $20^{\circ}{\sim}30^{\circ}$ for the safety of structures.

  • PDF

Taxonomical Classification of Bugog Series (부곡통의 분류)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Sonn, Yeon-Kyu;Hong, Suk-Young;Kim, Yi-Hyun;Choe, Eun-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.472-477
    • /
    • 2009
  • This study was conducted to reclassify Bugog series based on the second edition of Soil Taxonomy : A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Morphological properties of typifying pedon of Bugog series were investigated and physico-chemical properties were analyzed according to Soil Survey Laboratory Methods Manual. The typifying pedon of Bugog series has strong brown (7.5YR 4/6) loam Ap horizon (0~22 cm), brown (7.5YR 4/4) clay loam BAt horizon (22~41 cm), strong brown (7.5YR 4/6) silty clay loam Bt1 horizon (41~59 cm), strong brown (7.5YR 4/6) silty clay loam Bt2 horizon (59~78 cm), brown (7.5YR 4/4) silty clay loam Btx1 horizon(78~90 cm), and brown (7.5YR 4/4) Btx2 horizon(90~160 cm). That occurs on swale foot slope in area of mainly granite gneiss, granite, and schist rock materials. The typifying pedon has an argillic horizon from a depth of 22 to more than 160 cm and a base saturation (sum of cations) of less than 35% at 75 cm below the upper boundary of the fragipan. That can be classified as Ultisol, not as Alfisol. The pedon has udic soil moisture regime, and can be classified as Udult. That has a fragipan with an upper boundary within 100 cm of the mineral soil surface, and keys out as Fragiudult. Also that meets the requirements of Typic Fragiudult. That has 18% to 35% clay at the particle-size control section, and has mesic soil temperature regime. Bugog series can be classified as fine silty, mixed, mesic family of Typic Fragiudults, not as fine loamy, mixed, mesic family of Typic Fragiudalfs.

Site Characterization using Shear-Wave Velocities Inverted from Rayleigh-Wave Dispersion in Chuncheon, Korea (레일리파 분산을 역산하여 구한 횡파속도를 이용한 춘천시의 부지특성)

  • Jung, JinHoon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • To reveal and classify site characteristics in densely populated areas in Chuncheon, Korea, Rayleigh-waves were recorded at 50 sites including four sites in the forest area using four 1-Hz velocity sensors and 24 4.5-Hz vertical geophones during the period of January 2011 to May 2013. Dispersion curves of the Rayleigh waves obtained by the extended spatial autocorrelation method were inverted to derive shear-wave velocity ($v_s$) models comprising 40 horizontal layers of 1-m thickness. Depths to weathered rocks ($D_b$), shear wave velocities of these basement rocks ($v_s^b$), average velocities of the overburden layer ($\bar{v}_s^s$), and the average velocity to a depth of 30 m ($v_s30$), were then derived from those models. The estimated values of $D_b$, $v_s^b$, $\bar{v}_s^s$, and $v_s30$ for 46 sites at lower altitudes were in the ranges of 5 to 29 m, 404 to 561 m/s, 208 to 375 ms/s, and 226 to 583 m/s, respectively. According to the Korean building code for seismic design, the estimated $v_s30$ indicates that the lower altitude areas in Chuncheon are classified as $S_C$ (very dense soil and soft rock) or $S_D$ (stiff soil). To determine adequate proxies for $v_s30$, we compared the computed values with land cover, lithology, topographic slope, and surface elevation at each of the measurement sites. Due to a weak correlation (r = 0.41) between $v_s30$ and elevation, the best proxy of them, applications of this proxy to Chuncheon of a relatively small area seem to be limited.

A Preliminary Study on Stratigraphy and Petrochemistry of the Okcheon Group, Southwestern Okcheon Metamorphic Belt (서남 옥천변성대 옥천층군의 층서 및 암석화학에 대한 예비연구)

  • 유인창;김성원;오창환;이덕수
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.511-525
    • /
    • 2003
  • The Okcheon Group in the southwestern part of the Okcheon Metamorphic Belt is subdivided into two distinct tectonostratigraphic units: the Boeun unit in the south and the Pibanryeong unit in the north. The Boeun unit consists of petites, psammites, carbonaceous petites, limestones and pebble-bearing quartzites. The Pibanryeong unit is composed of petites, well-sorted fine-grained psammites, carbonaceous psammites and quartzites. In order to outlining stratigraphy and depositional environments of the Okcheon Group, detailed stratigraphic sections were measured in three locations; one section(Gosan section) of the Boeun unit and two sections(Sorungjae and Hwangryeongzae sections) of the Pibanryeong unit. The Gosan section of the Boeun unit is interpreted to be deposited in the shallow marine environments, whereas the Sorungjae and Hwangryeonaiae sections of the Pibanryeong unit appear to be deposited in slope and deep basin environments. This result indicates rapid subsidence between deposition of the Boeun and Pibanryeong units in sedimentary environment. The trace of sedimentological environments in the Hwasan area was investigated by geochemical analysis of 109 metapelitic and psammitic rock samples. Distinct chemical variations of politic and psammitic rocks from the Boeun and Pibanryeong units in the study area are evident from plots of major elements and $A1_2O_3$/$SiO_2$ versus Basicity Index($Fe_2O_3{+}MgO$)/($SiO_2{+}K_2O{+}Na_2O$). The rocks show a progressive chemical trend from the Boeun unit to the Pibanryeong unit on these diagrams. They in the southern sector of the Boeun unit display lower values and a comparatively wide range of $A1_2O_3$/$SiO_2$ and Basicity Index, as compared with those from the northern sector of the Boeun and Pibanryeong units. The southern sector of the Pibanryeong unit including narrow staurolite-bearing zone is characterized by values that are transitional between the Boeun and Pibanryeong units. These data, combined with depositional environment progressively deepened towards the northwest, support a half-graben model for the Okcheon basin, as proposed by Cluzel et al.(1990)

The Forming Process of the Maisan and Nearby Famous Mountains and the Related Mountain Ranges and Water Systems (마이산과 주변 명산의 형성과정과 그에 관련된 산맥과 수계 변화)

  • Oh, Changwhan;Lee, Seunghwan;Lee, Boyoung
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.201-219
    • /
    • 2017
  • The Jinan Basin which includes Maisan locates in the central part of the northern boundary of the Yeongnam Massif. The basement rocks of the Jinan Basin and surrounding area are Precambrian gneiss and Mesozoic granite which were exposed on the surface before Cretaceous. The Jinan Basin, one of the Cretaceous pull-apart basins in South Korea, formed along the Yongdong-Gwangju fault system. Maisan is composed of conglomerate deposited in the eastern slope of the Jinan Basin showing the shape of horse ears and the unusual topography where many tafonies were developed. The strike slip fault that caused the Jinan Basin was connected to the deep depth so that the magma formed at 200 km depth could have extruded on the surface causing active volcanic activity in and around the Jinan basin. As a result, Cheonbansan composed of pyroclastic rocks, Gubongsan consisting of volcanic neck and WoonilamBanilam formed by the lava flow, appear around Maisan forming a specific terrain. After the formation of the Jinan Basin and surrounding volcanic rocks, they uplifted to form mountains including Masian; the uplifting time may be ca. 69-38 Ma. At this time, the Noryeong mountain range may be formed in the regions which extended from Chugaryeong through Muju and Jinan to Hampyeong dividing the Geumgang and Seomjingang water systems. Due to the ecological barrier, the Noryeong mountain range, Coreoleuciscus splendidus living in the Geumgang water systems was differentiated from that in the Soemjingang water system. In addition, the Geumgang and Mangyeong-Dongjingang water systems were separated by the Unjangsan, which developed in the NNW direction. As a result, diverse ecosystem have been established in and around Maisan and at the same time, diverse cultural and historical resources related to Maisan's unique petrological features, were also established. Therefore, Maisan and surrounding area can be regarded as a place where a geotourism can be successfully established by combining the ecological, cultural and historical resources with a geological heritage. Therefore Maisan and surrounding areas have a high possibility to be a National Geopark and UNESCO Global Geopark.

On the Construction of Embankment of the Eui-Rim Reservoir (의림지(義林池) 축제(築堤)에 관(關)한 일고찰(一考察))

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.23 no.1
    • /
    • pp.29-33
    • /
    • 1974
  • U-Reuk, a laureate musician in the days of King Jin-Heung, Silla Dynasty, built the Eui Rim Reservoir about 1,400 years ago. This was one of the oldest man-made reservoir. The embankment of the reservoir collapsed by the clumsy artificial drainage on August 19, 1972 when the heavy rainfall of 462 mm/day caused a dangerous overflow of the reservoir. The result of the study on the mystic ancient embankment techniques are as follows: 1. Sandy loam derived from the weathering of granite which is the most widely distributed rock type in the area, was used in the embankment. Large size logs (embankment core) of 30-50 cm in diameter were buried lengthwise along the embankment. 2. The six stocks of Pinus densiflora, 3 stocks of Quercus acutissima, 1 stock of Quercus variabilis and 1 stock of Popolus maximowiczii, altogether 11 stocks are identified. Forest types in the nearby area during the days of the reservoir construction seem to be includde a considerable number of Pinus densiflora, Quercus and Populus species. 3. The angle of repose of the earth materials is taken into account during the embankment. On top of the embankment double layers of clay (20-30 cm indepth) were spread and consolidated. Layer of litter of 20-40 cm in deep covered on the clay layer of the embankment completely, and another layer of clay was consolidated over the litter. Finally, a layer of stones of 10-30 cm in diameter and clay (yellow soil layer) toped the embankment. 4. At the lower part of the embankment clay layer was thicker and became thinner as it goes upwards. At every layer, soil was consolidated and burned. When embankment was completed, it was covered evenly with heavy clay, and finally it was topped with general soil. 5. The heavy clay layer on the inner slope of the embankment showed gray phenomena and litter remained raw humus layer. The clay layer functioned as rubber in the water, and raw humus layer prevented water from seepages. Thus, the embankment was solidly built in this way. 6. The ancient embankment techniques used soils conveyed from nearby area taking the angle of repose into account. Once embankment was completed, clay and litter layers were added to have a plasticity and to withstand the water pressure. 7. It is an excellent technique that the reservoir was constructed with least labor for maximum effects while the recent embankment techniques requires a large amount of labor.

  • PDF

Perspectives on the Characteristics and Meanings as of a Traditional Ecological Landscape as Dangsan Forest and Dangsan Ritual Place in Seoseong-ri, Wando-gun (완도군 서성리 당산숲.당산제 공간의 전통생태경관적 특성 및 의미 고찰)

  • Choi, Jai-Ung;Kim, Dong-Yeob;Kim, Mi-Heui;Jo, Lock-Whan
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.30 no.1
    • /
    • pp.135-145
    • /
    • 2012
  • Traditional village forests called Dangsan forests and Bibo forests in Korea represent an unique cultural landscape with a history of more than several hundred years. Feng-shui forest in China, Satoyama and Shinto shrine forest in Japan are recognized internationally as 'traditional ecological landscapes'. Dangsan forests and Bibo forests have been preserved through generations in the villages, and are no less valuable than Feng-shui forest, and Satoyama. However, the names of Dangsan forest and Bibo forest have not been well recognized worldwide. Dangsan forest in Seoseong-ri, Wando-gun is located on a mountain slope at a riparian forest. It consists of an evergreen broadleaf forest and Carpinus laxiflora forest. The characteristics of Dangsan forest in Seoseong-ri could be found at 10 sacrifice offering places. Two Dangsan trees on the coastal area are included in the sacrifice offering places. Cultural heritage can retain their value when they are fully sustained. Additional construction, demolition or modification should be banned. Furthermore, all means must be taken to facilitate the preservation of monuments and the value and meanings pertaining to them should not be distorted. In a respect of authenticity, Dangsan forest in Seoseong-ri, Wando-gun seems to have original Dangsan culture based on animism with a philosophic background, where a religious service for the mountain god is held at rock of mountain god, and Dangsan ritual is held at shrine on January 8 at 4:00 am by lunar calendar. Relating to the conservation and management of cultural heritage in international discussion, the importance is that whether there is sustainability on the right to the enjoyment of cultural heritage. Dangsan forest in Seoseong-ri is leaved alone to the public. The forest need a social mechanism to support the recovery of deformed shrine and to heighten public awareness of Dangsan forest in order to claim the value as a unique traditional ecological landscape in Korea.

Characteristics of Environmental Factors and Vegetation Community of Zabelia tyaihyonii (Nakai) Hisauti & H.Hara among the Target Plant Species for Conservation in Baekdudaegan (백두대간 중점보전종인 댕강나무의 식생 군집 및 환경인자 특성)

  • Kim, Ji-Dong;Lee, Hye-Jeong;Lee, Dong-Hyuk;Byeon, Jun Gi;Park, Byeong Joo;Heo, Tae-Im
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.201-223
    • /
    • 2022
  • Currently, species extinctions are increasing due to climate change and continued anthropogenic impact. We selected 300 species for conservation with emphasis on plants co-occurring in the Baekdudaegan area, which is a large ecological axis of Korea. We aimed to investigate the vegetation community and environmental characteristics of Zabelia tyaihyonii in the limestone habitat among the target plant species in the Baekdudaegan region to derive effective conservation strategies. In Danyang-gun, Yeongwol-gun, and Jecheon-si, we selected 36 investigation sites where Z. tyaihyonii was present. We investigated the vegetation, flora, soil and physical environment. We also found notable plants such as Thalictrum petaloideum, Sillaphyton podagraria, and Neillia uekii at the investigation sites. We classified forest vegetation community types into 4 vegetation units and 7 species group types. With canonical correspondence analysis (CCA) of the vegetation community and habitat factors, we determined the overall explanatory power to be 75.2%, and we classified the environmental characteristics of the habitat of Z. tyaihyonii into a grouping of three. Among these, we detected a relationship between the environmental factors elevation, slope, organic matter, rock ratio, pH, potassium, and sodium. We identified numerous rare and endemic plants, including Thalictrum petaloideum, in the investigation site, and determined that these groups needed to be preserved at the habitat level. In the classification of the vegetation units analyzed based on the emerging plants and the CCA, we reaffirmed the uniqueness and specificity of the vegetation community in the habitat of Z. tyaihyonii. We anticipate that our results will be used as scientific evidence for the empirical conservation of the native habitats of Z. tyaihyonii.

Study on Plant Indicator Species of Picea jezoensis (Siebold & Zucc.) Carrière Forest by Topographic Characters - From China (Baekdu-san) to South Korea - (가문비나무림의 지형특성에 따른 식물 지표종에 관한 연구 - 중국 백두산 일대에서 남한까지 -)

  • Byeong-Joo, Park;Tae-Im, Heo;Jun-Gi, Byeon;Kwang-il, Cheon
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.6
    • /
    • pp.388-408
    • /
    • 2022
  • This study was conducted to select the indicator species (plant) according to the topographical characteristics in the Picea jezoensis forests, endangered subalpine coniferous trees. In South Korea and China (close to Baekdusan), the southern tree line limit of Picea jezoensis has meaningful geographical and latitudinal values for analyzing the ecological characteristics of P. jezoensis forests. Latitude greatly affects the geographical values of plant ecology, and the difference in latitude and habitat affects the change in species composition in forests. With prolonged environmental change, the habitat of subalpine plants will become smaller, and the plants may become extinct. As the P. jezoensis forests of South Korea and China, in particular, are in danger of disappearing without protection, it is important to monitor the population and develop a conservation strategy. Eighty-seven circular plots were established in P. jezoensis forests in South Korea and China. Through processes such as MRPP-test and NMS ordination, indicator species were selected based on this, and basic data for biodiversity assessment were presented. As a result of the Indicator Species Analysis (ISA), 5 taxa were selected from the upperstory vegetation and 18 taxa from the understory vegetation at the altitude(p<0.05). Indicator species by aspect were analyzed as 3 taxa for upperstory vegetation and 16 taxa for understory vegetation (p<0.05). In the case of indicator species according to the slope, 6 taxa for upper vegetation and 24 taxa for understory vegetation were selected(p<0.05). As for the indicator species according to their habitat, 8 taxa in upper vegetation and 65 taxa on understory vegetation were selected. As a result of MRPP-test, it was analyzed that the species composition was heterogeneous in the group of understory vegetation than that of upperstory vegetation. As a result of NMS ordination, the correlation with environmental factors of indicator species was analyzed by rock exposure for upperstory vegetation and latitude for understory vegetation (cut off level=0.3).