• Title/Summary/Keyword: Rock Fracture

Search Result 548, Processing Time 0.024 seconds

Retreatment of fractured implant overdenture due to long-term maintenance failure (장기간의 유지관리 실패로 인해 파절된 임플란트 피개의치 재수복 증례)

  • Kim, Minjee;Hong, Seoungjin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.235-242
    • /
    • 2018
  • Periodontal and prosthodontic maintenance of implant overdenture is a very important factor for the long term success of the prosthesis and implants. Failure of maintenance can lead to prosthetic failure due to peri-implant bone loss and fracture and wear of the prosthesis or components. In this case, the existing gold milled bars were reconstructed with cobalt chrome milled bar in a manner that does not interfere with the external shape for the retreatment of fractured implant overdenture by maintenance failure. Two implants of mandible were selected strategically and the CM LOC attachments were connected to the two implants, and implant overdentures were fabricated. As a result, prosthesis with a functional and esthetic design that facilitates good hygiene management of the patient was delivered, which is advantageous for long term maintenance, and regular check-ups were scheduled for proper maintenance.

Shock Metamorphism of Plagioclase-maskelynite in the Lunar Meteorite Mount DeWitt 12007 (달운석 Mount DeWitt 12007의 마스컬리나이트 충격 변성 특성 연구)

  • Kim, Hyun Na;Park, Changkun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.131-139
    • /
    • 2016
  • Detailed knowledge on maskelynite, a glassy phase of plagioclase found in shocked meteorites and impact craters, is essential to understand a shock metamorphism. Here, we explore an inhomogeneous shock metamorphism in the lunar meteorite Mount DeWitt (DEW) 12007 with an aim to understand the formation mechanism of maskelynite. Most plagioclase grains in the DEW 12007 partially amorphized into maskelynite with a unidirectional orientation. Back-scattered electron (BSE) images of maskelynite show a remnant of planar deformation fracture possibly indicating that the maskelynite would be formed by solid-state transformation(i.e., diaplectic glass). Plagioclase with flow texture is also observed along the rim of maskelynite, which would be a result of recrystallization of melted plagioclase. Results of Raman experiments suggest that shock pressure for plagioclase and maskelynite in the DEW 12007 is approximately 5-32 GPa and 26-45 GPa, respectively. The difference in shock pressures between plagioclase and maskelynite can be originated from 1) external factors such as inhomogeneous shock pressure and/or 2) internal factors such as chemical composition and porosity of rock. Unfortunately, Raman spectroscopy has a limitation in revealing the detailed atomic structure of maskelynite such as development of six- or five-coordinated aluminum atom upon various shock pressure. Further studies using nuclear magnetic resonance spectroscopy are necessary to understand the formation mechanism of maskelynite under high pressure.

Authigenic Phillipsite in Deep-sea Manganese Nodules from the Clarion-Clipperton Fracture Zones, NE Equatorial Pacific (적도 북동 태평양, 클라리온-클리퍼톤 균열대에서 산출되는 망간단괴내의 자생 필립사이트)

  • Lee, Chan Hee;Lee, Sung-Rock
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.421-428
    • /
    • 1996
  • The occurrence, optical property, chemical composition, crystal structure and formation environments of the phillipsite within deep-sea manganese nodules were systematically investigated in this study. Phillipsite in manganese nodules occurs in nucleus of nodules along with consolidated bottom sediments, weathered volcanic debris, and interstitial grains in the each layer of manganese encrusts. Phillipsite is predominantly pseudomorphs of volcanic shards, and occurs as white to pale yellow in color lath-shaped and equant crystals. These show aggregations of prismatic, blocky, and bladed of 2 to $20{\mu}m$ long, and 2 to $5{\mu}m$ thick. The simplified average chemical formula of phillipsite is $({Ca_{0.1}Mg_{0.3}Na_{1.1}K_{1.5}})_3{(Fe_{0.3}Al_{4.2}Si_{11.8})O_{32}{\cdot}10H_2O}$ with a very siliceous and alkalic. The $Si/(Al+Fe^{+3})$ ratio is 2.37 to 2.78 and alkalis greatly exceed the divalent exchangeable cations, and Na/K ratio is 0.59 to 0.81. The phillipsite is monoclinic ($P2_l/m$) with the unit-cell parameters, $a=10.005{\AA}$, $b=14.129{\AA}$, $c=8.686{\AA}$, ${\beta}=124.35^{\circ}$, and $V=1013.6{\AA}^3$. Phillipsites in manganese nodules formed apparently authigenically at a temperature less than $10^{\circ}C$, and they crystallized at a pressure of less than 0.7 kb, and pH of about 8 in deep-sea environments.

  • PDF

Detection of Inflow Permeable Zones Using Fluid Replacement Conductivity Logging in Coastal Aquifer (공내수 치환 전기전도도검층을 이용한 연안지역 대수층의 탐지)

  • Hwang, Se-Ho;Park, Yun-Seong;Shin, Je-Hyun;Park, Kwon-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.225-230
    • /
    • 2006
  • Fluid replacement and conductivity logging have been applied to three boreholes in coastal aquifer in order to identify permeable fractures and to estimate the origin of saline groundwater. Fluid replacement technique measures and monitors the change of borehole fluid conductivity with depth under ambient or pumping condition after replacing the original borehole fluid with different one (by pumping out original one and injecting simultaneously new one at the hole bottom). After the replacement of borehole fluid, the change of fluid conductivity can be the direct indicator of the intake flow of formation water through aquifer such as permeable fractures or porous formations. The conductivity profiles measured with times therefore indicate the locations of permeable zone or fractures within the open hole or the fully slotted casing hole. As a result of fluid conductivity logging for three boreholes at coastal area in Yeonggwang, Jeonam Province, it is interpreted that the seawater intrusion in this area is not by remnant saline groundwater after land reclamation but mainly by intrusion of saline water through fractured rock. This approach might be useful for assessing the characteristics of seawater intrusion, the design of optimal pumping, the mitigation of seawater intrusion using freshwater injection, and estimating the hydraulic characteristics in coastal aquifer.

Propagation characteristics of blast-induced vibration to fractured zone (파쇄영역에 따른 발파진동 전파특성)

  • Ahn, Jae-Kwang;Park, Duhee;Park, Ki-Chun;Yoon, Ji Nam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.959-972
    • /
    • 2017
  • In evaluation of blast-induced vibration, peak particle velocity (PPV) is generally calculated by using attenuation relation curve. Calculated velocity is compared with the value in legal requirements or the standards to determine the stability. Attenuation relation curve varies depending on frequency of test blasting, geological structure of the site and blasting condition, so it is difficult to predict accurately using such an equation. Since PPV is response value from the ground, direct evaluation of the structure is impractical. Because of such a limit, engineers tend to use the commercial numerical analysis program in evaluating the stability of the structure more accurately. However, when simulate the explosion process using existing numerical analysis program, it's never easy to accurately simulate the complex conditions (fracture, crushing, cracks and plastic deformation) around blasting hole. For simulating such a process, the range for modelling will be limited due to the maximum node count and it requires extended calculation time as well. Thus, this study is intended to simulate the elastic energy after fractured zone only, instead of simulating the complex conditions of the rock that results from the blast, and the analysis of response characteristics of the velocity depending on shape and size of the fractured zone was conducted. As a result, difference in velocity and attenuation character were calculated depending on fractured zone around the blast source appeared. Propagation of vibration tended to spread spherically as it is distanced farther from the blast source.

Application of Depth Resolution and Sensitivity Distribution of Electrical Resistivity Tomography to Modeling Weathered Zones and Land Creeping (전기비저항 깊이분해능 및 감도분포: 풍화층 및 땅밀림 모델에 대한 적용)

  • Kim, Jeong-In;Kim, Ji-Soo;Ahn, Young-Don;Kim, Won-Ki
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.157-171
    • /
    • 2022
  • Electrical resistivity tomography (ERT) is a traditional and representative geophysical method for determining the resistivity distributions of surrounding soil and rock volumes. Depth resolution profiles and sensitivity distribution sections of the resistivities with respect to various electrode configurations are calculated and investigated using numerical model data. Shallow vertical resolution decreases in the order of Wenner, Schlumberger, and dipole-dipole arrays. A high investigable depth in homogeneous medium is calculated to be 0.11-0.19 times the active electrode spacing, but is counterbalanced by a low vertical resolution. For the application of ERT depth resolution profiles and sensitivity distributions, we provide subsurface structure models for two types of land-creping failure (planar and curved), subvertical fracture, and weathered layer over felsic and mafic igneous rocks. The dipole-dipole configuration appears to be most effective for mapping land-creeping failure planes (especially for curved planes), whereas the Wenner array gives the best resolution of soil horizons and shallow structures in the weathered zone.

Diagenetic History of the Ordovician Chongson Limestone in the Chongson Area, Kangwon Province, Korea (강원도 정선 지역 오르도비스기 정선석회암의 속성 역사)

  • Bong, Lyon-Sik;Chung, Gong-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.449-468
    • /
    • 2000
  • The Ordovician Chongson Limestone deposited in the carbonate ramp to the rimmed shelf shows diverse diagenetic features. The marine diagenetic feature appears as isopachous cements surrounding ooids and peloids. Meteoric diagenetic features are recrystallized finely and coarsely crystalline calcite, evaporite casts filled with calcite, and isopachous sparry calcite surrounding ooid grains. Shallow burial diagenetic features include wispy seam, microstylolite, and dissolution seam whereas deep burial features include stylolite, burial cements. blocky calcite with twin lamellae, and poikilotopic calcite. Dolomites consist of very finely to finely crystalline mosaic dolomite formed as supratidal dolomite, disseminated dolomite of diverse origin, patchy dolomite formed from bioturbated mottles, and saddle dolomite of burial origin. Silicified features include calcite-replacing quartz and fracture-filling megaquartz. Burial cements characterized by poikilotopic texture show ${\delta}^{18}$O value of -10.4 %$_o$ PDB, ${\delta}^{13}$C value of -1.0%$_o$ PDB and 504ppm Sr, 3643ppm Fe, and 152ppm Mn concentrations. Finely and coarsely crystalline limestones show similar ${\delta}^{18}$O and ${\delta}^{13}$C value to those of burial cements; however, they show lower Sr and higher Fe and Mn concentrations than burial cements. This suggests that very finely and coarsely crystalline limestones were recrystallized in freshwater and then they were readjusted geochemically in the burial setting whereas the burial cements were formed in relatively high temperature and low water/rock ratio conditions. Very finely and finely crystalline mosaic dolomites with ${\delta}^{18}$O value of -8.2%$_o$ PDB, ${\delta}^{13}$C value of -1.9 %$_o$ PDB, and 213ppm Sr, 3654ppm Fe, and 114ppm Mn concentrations, respectively are interpreted to have been formed penecontemporaneously in supratidal flat and then recrystallized in the low water/rock ratio burial environment. Geochemical data suggest that the low water/rock ratio burial environment was the dominant diagenetic setting in the Chongson Limestone. The Chongson Limestone has experienced marine and meteoric diagenesis during early diagenesis. With deposition of Haengmae and Hoedongri formations part of the Chongson Limestone was buried beneath these formations and it experienced shallow burial diagenesis. During the Devonian the Chongson Limestone was tectonically deformed and subaerially exposed. During the Carboniferous to the Permian about 3.3km thick Pyongan Supergroup was deposited on the Chongson Limestone and the Chongson Limestone was in deep burial depths and stylolite, burial cements, blocky calcite and saddle dolomite were formed. After this burial event the Chongson Limestone was subaerially exposed during the Mesozoic and Cenozoic by three periods of tectonic disturbance including Songnim, Daebo and Bulguksa disturbance. Since the Bulguksa disturbance during Cretaceous and early Tertiary the Chongson Limestone has been subaerially exposed.

  • PDF

Relationships between Texture and Physical Properties of Jurassic Unagsan and Cretaceous Sogrisan Granites (쥬라기 운악산 및 백악기 속리산 화강암류의 조직과 물성과의 관계)

  • Yun Hyun-Soo;Park Deok-Won;Hong Sei-Sun;Kim Ju-Yong;Yang Dong-Yoon;Chang Soobum
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.169-184
    • /
    • 2005
  • Unagsan and Sogrisan granites are widely distributed in the northern Gyeonggi massif and middle Ogcheon belt, respectively, and they show different petrologic characteristics as follows. The former has compact textures and light grey colors, and the latter has spotted miarolitic textures and pink colors. Most of the samples selected for tests are fresh and coarse-grained. And bored core samples were prepared so that they are vertical to the rift plane. The results of modal analysis show that Unagsan granite has significantly higher quartz and plagioclase contents (Qz+Pl) than Sogrisan granite. In contrast, alkali feldspar content (Af) of Sogrisan granite is much higher than that of Unagsan granite. Therefore, it is believed that the light grey colors of Unagsan granite are due to relatively high Qz+Pl, and the pink colors of Sogrisan granite are caused by higher Af. Fractures in Sogrisan granite have strongly perpendicular strike patterns and more dip values close to vertical compared with the fractures in Unagsan granite. Results of the fracture pattern analysis suggest that the Sogrisan granite has better potential to produce dimension stones than the Unagsan granite. However, miarolitic textures often found in the Sogrisan granite may be one of the factors reducing the granite quality. The Unagsan and Sogrisan granites have similar specific gravity values of 2.60 and 2.57, respectively. Absorption ratios and porosity values of Sogrisan granite are higher than those of Unagsan granite, and they shows linearly positive correlations. Compressive and tensile strengths of the Unagsan granite are generally higher than those of Sogrisan granite. These differences and variation trends found in physical properties of Unagsan and Sogrisan granite can be explained by the differences in the textures of Unagsan and Sogrisan granites, namely compact and miarolitic textures respectively. For Unagsan granite, compressive and tensile strengths are negatively correlated with porosity but for Sogrisan granite no specific correlations are found. This is probably due to the irregular dispersion patterns of miarolitic textures formed during the later stages of magmatic processes. Contrary to the trends found in absorption ratios, both granites have similar values of abrasive hardness, which can be explained by higher Qz+Af of the Sogrisan granite than those of the Unagsan granite and that quartz and alkali feldspar have relatively larger hardness values. For Sogrisan granite, compressive strength shows slightly positive correlations with Qz+Af+Pl and negative correlations with biotite and accessory mineral contents (Bt+Ac).

Security and Safety Assessment of the Small-scale Offshore CO2 Storage Demonstration Project in the Pohang Basin (포항분지 해상 중소규모 CO2 지중저장 실증연구 안전성 평가)

  • Kwon, Yi Kyun;Chang, Chandong;Shinn, Youngjae
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.217-246
    • /
    • 2018
  • During the selection and characterization of target formations in the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin, we have carefully investigated the possibility of induced earthquakes and leakage of $CO_2$ during the injection, and have designed the storage processes to minimize these effects. However, people in Pohang city have a great concern on $CO_2$-injection-intrigued seismicity, since they have greatly suffered from the 5.4 magnitude earthquake on Nov. 15, 2017. The research team of the project performed an extensive self-investigation on the safety issues, especially on the possible $CO_2$ leakage from the target formation and induced earthquakes. The target formation is 10 km apart from the epicenter of the Pohang earthquake and the depth is also quite shallow, only 750 to 800 m from the sea bottom. The project performed a pilot injection in the target formation from Jan. 12 to Mar. 12, 2017, which implies that there are no direct correlation of the Pohang earthquake on Nov. 15, 2017. In addition, the $CO_2$ injection of the storage project does not fracture rock formations, instead, the supercritical $CO_2$ fluid replaces formation water in the pore space gradually. The self-investigation results show that there is almost no chance for the injection to induce significant earthquakes unless injection lasts for a very long time to build a very high pore pressure, which can be easily monitored. The amount of injected $CO_2$ in the project was around 100 metric-tonne that is irrelevant to the Pohang earthquake. The investigation result on long-term safety also shows that the induced earthquakes or the reactivation of existing faults can be prevented successfully when the injection pressure is controlled not to demage cap-rock formation nor exceed Coulomb stresses of existing faults. The project has been performing extensive studies on critical stress for fracturing neighboring formations, reactivation stress of existing faults, well-completion processes to minimize possible leakage, transport/leakage monitoring of injected $CO_2$, and operation procedures for ensuring the storage safety. These extensive studies showed that there will be little chance in $CO_2$ leakage that affects human life. In conclusion, the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin would not cause any induced earthquakes nor signifiant $CO_2$ leakage that people can sense. The research team will give every effort to secure the safety of the storage site.

Gravity Survey on the Southwestern Area of Jechǒn in the Okchǒn Zone (제천(提川) 서남부(西南部) 옥천대(沃川帶) 지역(地域)에 대(對)한 중력탐사연구(重力探査硏究))

  • Min, Kyung Duck;Park, Hye Sim
    • Economic and Environmental Geology
    • /
    • v.22 no.2
    • /
    • pp.91-102
    • /
    • 1989
  • The gravity measurement has been conducted at 61 stations with an interval of about 500 to 1,000 m along two survey lines of about 47 Km between $Chungju-Jech{\check{o}}n$ and $Salmi-D{\check{o}}cksanmy{\check{o}}n$ in order to study on the subsurface geologic structure and structural relation between $Okch{\check{o}}n$ Group and Great Limestone Group of $Chos{\check{o}}n$ Supergroup. The Bouger gravity anomalies were obtained from the reduction of the field observations, and the distribution patterns of the basement and subsurface geologic structure were interpreted by means of the Fourier-Series and Talwani method for two-dimensional body. The depth of Conrad discontinuity varies from 12.7 Km to 15.7 Km, and vertical displacements along the Osanri and Bonghwajae faults are 1.0 Km and 1.5 Km, respectively between Chungju and $Jech{\check{o}}n$. The depth of Conrad discontinuity varies from 13.8 Km to 15.4 Km, and vertical displacement along the Bonghwajae fault is 0.5 Km between Salmi and $D{\check{o}}cksanmyon$. The basement is widely exposed at several places between Chungju and $Jech{\check{o}}n$. In the unexposed area between Osanri and $W{\check{o}}lgulri$, its depth is from 1.5 Km to 2.1 Km. It is displaced downward along the Osanri and Bonghwajae faults by 0.8 Km and 0.6 Km, respectively, and is displaced upward along the Dangdusan fault by 1.6 Km. On the other hand, the depth of the basement varies abruptly by the Sindangri, Jungwon, Kounri, and Bonghwajae faults between Salmi and $D{\check{o}}cksanmy{\check{o}}n$, and it is from 2.8 Km to 3.2 Km around $Salmimy{\check{o}}n$, from 1.6 Km to 2.5 Km between the Sindangri and Bonghwajae faults, 3.0 Km near Koburangjae, and 2.5 Km at $Doj{\check{o}}nri$. The high Bouguer gravity anomalies are due to the accumulation of $Okch{\check{o}}n$ Group and $Jangs{\check{o}}nri$ Metamorphic Complex whose density is higher than the basement exposed between Sondong and Osanri, and imply the existance of Bonghwajae Metabasite or hornblende gabbro of high density distributed along the Bonghwajae fault in the vicinity of Koburangjae. The low Bouguer gravity anomalies resulted form the fracture zone associated with fault or rock of low density imply the existance of the Osanri, Bonghwajae, Dangdusan faults and $Daed{\check{o}}cksan$ thrust between Chungju and $Jech{\check{o}}n$, the uplift of the basement by the Sindangri, Jungwon, Kounri, and Bonghwajae faults, and extensive distribution of Cretaceous biotite granites between Salmi and $Docksanmy{\check{o}}n$. The thickness of $Okch{\check{o}}n$ metasediments varies from 1.5 Km to 3.2 Km, and that of Great Limestone Group of $Chos{\check{o}}n$ Supergroup from 200 m to 700 m. It is interpreted that $Okch{\check{o}}n$ Group is in contact with Great Limestone Group of $Chos{\check{o}}n$ Supergroup by the fault zones of the Bonghwajae and $Daed{\check{o}}cksan$ faults, and the Bongwhajae fault is a thrust of high angle, by which the east of the basement is displaced downward 0.5 Km between Chungju and lechon, and 1.0 Km between Salmi and $D{\check{o}}cksanmy{\check{o}}n$.

  • PDF