DOI QR코드

DOI QR Code

Shock Metamorphism of Plagioclase-maskelynite in the Lunar Meteorite Mount DeWitt 12007

달운석 Mount DeWitt 12007의 마스컬리나이트 충격 변성 특성 연구

  • Kim, Hyun Na (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Park, Changkun (Division of Polar Earth-System Sciences, Korea Polar Research Institute)
  • 김현나 (공주대학교 지질환경과학과) ;
  • 박창근 (극지연구소 극지지구시스템연구부)
  • Received : 2016.09.02
  • Accepted : 2016.09.19
  • Published : 2016.09.30

Abstract

Detailed knowledge on maskelynite, a glassy phase of plagioclase found in shocked meteorites and impact craters, is essential to understand a shock metamorphism. Here, we explore an inhomogeneous shock metamorphism in the lunar meteorite Mount DeWitt (DEW) 12007 with an aim to understand the formation mechanism of maskelynite. Most plagioclase grains in the DEW 12007 partially amorphized into maskelynite with a unidirectional orientation. Back-scattered electron (BSE) images of maskelynite show a remnant of planar deformation fracture possibly indicating that the maskelynite would be formed by solid-state transformation(i.e., diaplectic glass). Plagioclase with flow texture is also observed along the rim of maskelynite, which would be a result of recrystallization of melted plagioclase. Results of Raman experiments suggest that shock pressure for plagioclase and maskelynite in the DEW 12007 is approximately 5-32 GPa and 26-45 GPa, respectively. The difference in shock pressures between plagioclase and maskelynite can be originated from 1) external factors such as inhomogeneous shock pressure and/or 2) internal factors such as chemical composition and porosity of rock. Unfortunately, Raman spectroscopy has a limitation in revealing the detailed atomic structure of maskelynite such as development of six- or five-coordinated aluminum atom upon various shock pressure. Further studies using nuclear magnetic resonance spectroscopy are necessary to understand the formation mechanism of maskelynite under high pressure.

마스컬리나이트(maskelynite)는 강한 충격에 의해 운석이나 크레이터(crater)에서 형성된 장석 조성의 비정질 상으로서, 마스컬리나이트의 형성 메커니즘에 대한 이해는 운석의 충격 변성 압력에 대한 중요한 정보를 제공한다. 본 연구는 마스컬리나이트의 형성 메커니즘을 규명하기 위한 예비연구로서, 달운석 Mount DeWitt (DEW) 12007에서 관찰되는 사장석과 마스컬리나이트의 충격 압력의 불균일성을 연구하였다. 달운석 DEW 12007에서 대부분의 사장석 입자 일부가 마스컬리나이트로 전이하여, 하나의 입자 내에서 사장석과 마스컬리나이트가 방향성을 가지고 혼재하는 양상이 관찰된다. 주사 전자 현미경의 후방 산란 이미지 관찰 결과, 마스컬리나이트 내부에 평면 변형 구조가 남아 있는 것은 다이어플렉틱 글래스일 가능성을 지시하는 것으로 보이는 반면, 입자 경계를 따라 사장석이 용융 후 재결정된 흔적도 나타난다. 라만 분광분석 결과는 사장석이 약 5-32 GPa, 마스컬리나이트가 26-45 GPa의 충격 변성 압력을 받았음을 지시한다. 이와 같이 한 입자 내에서 서로 다른 충격 변성 압력은 충격파의 불균일한 분포와 같은 운석 외부에 의한 원인 또는 사장석 입자의 물리적, 화학적 특성과 같은 운석 자체의 원인에 의해 발생할 수 있다. 하지만 라만 분광분석은 비정질 상(phase)인 마스컬리나이트의 원자 구조를 규명하기에는 한계가 있으며, 고압 환경에서 형성될 것으로 예상되는 고배위수 원자 환경의 관찰이 힘들다. 따라서 장석과 마스컬리나이트의 충격 압력 및 형성 메커니즘을 이해하기 위해, 장석과 마스컬리나이트의 화학 조성 및 원자 단위 구조의 규명이 필요하다.

Keywords

References

  1. Beck, P., Gillet, P., El Goresy, A., and Mostefaoui, S. (2005) Timescales of shock processes in chondritic and martian meteorites. Nature, 435(7045), 1071-1074. https://doi.org/10.1038/nature03616
  2. Bunch, T., Cohen, A.J., and Dence, M. (1967) Natural terrestrial maskelynite. American Mineralogist, 52(1-2), 244-253.
  3. Chen, M. and El Goresy, A. (2000) The nature of maskelynite in shocked meteorites: not diaplectic glass but a glass quenched from shock-induced dense melt at high pressures. Earth and Planetary Science Letters, 179(3-4), 489-502. https://doi.org/10.1016/S0012-821X(00)00130-8
  4. Collareta, A., D'Orazio, M., Gemelli, M., Pack, A., and Folco, L. (2016) High crustal diversity preserved in the lunar meteorite Mount DeWitt 12007 (Victoria Land, Antarctica). Meteoritics & Planetary Science, 51(2), 351-371. https://doi.org/10.1111/maps.12597
  5. Cygan, R.T., Boslough, M.B., and Kirkpatrick, R.J. (1992) NMR spectroscopy of experimentally shocked quartz and feldspar powders. Proceedings of Lunar and Planetary Science, 22, 127-136.
  6. El Goresy, A., Gillet, P., Miyahara, M., Ohtani, E., Ozawa, S., Beck, P., and Montagnac, G. (2013) Shock-induced deformation of Shergottites: Shockpressures and perturbations of magmatic ages on Mars. Geochimica et Cosmochimica Acta, 101, 233-262. https://doi.org/10.1016/j.gca.2012.10.002
  7. Fritz, J., Greshake, A., and Stoffler, D. (2005) Micro-Raman spectroscopy of plagioclase and maskelynite in Martian meteorites: Evidence of progressive shock metamorphism. Antarctic Meteorite Research, 18, 96-116.
  8. Grady, D.E. (1980) Shock deformation of brittle solids. Journal of Geophysical Research: Solid Earth, 85(B2), 913-924. https://doi.org/10.1029/JB085iB02p00913
  9. Greshake, A., Fritz, J., and Stoffler, D. (2004) Petrology and shock metamorphism of the olivine-phyric shergottite Yamato 980459: Evidence for a two-stage cooling and a single-stage ejection history. Geochimica et Cosmochimica Acta, 68(10), 2359-2377. https://doi.org/10.1016/j.gca.2003.11.022
  10. Grieve, R.A.F., Langenhorst, F., and Stoffler, D. (1996) Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience*. Meteoritics & Planetary Science, 31(1), 6-35. https://doi.org/10.1111/j.1945-5100.1996.tb02049.x
  11. Horz, F. and Quaide, W.L. (1973) Debye-scherrer investigations of experimentally shocked silicates. The Moon, 6(1), 45-82. https://doi.org/10.1007/BF02630652
  12. Han, J. (2016) Petrography, geochemistry and age of granophyre clast in the lunar meteorite DEW 12007. Department of Earth System Sciences, Master. Yonsei university.
  13. Handke, M. and Mozgawa, W. (1993) Vibrational spectroscopy of the amorphous silicates. Vibrational Spectroscopy, 5(1), 75-84. https://doi.org/10.1016/0924-2031(93)87057-Z
  14. Heymann, D. and Horz, F. (1990) Raman-spectroscopy and X-ray diffractometer studies of experimentally produced diaplectic feldspar glass. Physics and Chemistry of Minerals, 17(1), 38-44. https://doi.org/10.1007/BF00209224
  15. Jaret, S.J., Woerner, W.R., Phillips, B.L., Ehm, L., Nekvasil, H., Wright, S.P., and Glotch, T.D. (2015) Maskelynite formation via solid-state transformation: Evidence of infrared and X-ray anisotropy. Journal of Geophysical Research: Planets, 120(3), 570-587. https://doi.org/10.1002/2014JE004764
  16. Kowitz, A., Guldemeister, N., Reimold, W.U., Schmitt, R.T., and Wunnemann, K. (2013) Diaplectic quartz glass and $SiO_2$ melt experimentally generated at only 5 GPa shock pressure in porous sandstone: Laboratory observations and meso-scale numerical modeling. Earth and Planetary Science Letters, 384, 17-26. https://doi.org/10.1016/j.epsl.2013.09.021
  17. Kubo, T., Kimura, M., Kato, T., Nishi, M., Tominaga, A., Kikegawa, T., and Funakoshi, K.-I. (2010) Plagioclase breakdown as an indicator for shock conditions of meteorites. Nature Geoscience, 3(1), 41-45. https://doi.org/10.1038/ngeo704
  18. Lee, S.K., Cody, G.D., Fei, Y.W., and Mysen, B.O. (2004) Nature of polymerization and properties of silicate melts and glasses at high pressure. Geochimica et Cosmochimica Acta, 68(20), 4189-4200. https://doi.org/10.1016/j.gca.2004.04.002
  19. McMillan, P. (1984) Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy. American Mineralogist, 69(7-8), 622-644.
  20. Milton, D.J. and de Carli, P.S. (1963) Maskelynite: Formation by explosive shock. Science, 140(3567), 670-671. https://doi.org/10.1126/science.140.3567.670
  21. Min, K. and Lee, S.R. (2010) (U-Th)/He dating on martian meteorites: A review and perspective. Journal of Petrological Soceity of Korea, 16(4), 255-267 (in Korean with English abstract).
  22. Ohtani, E., Kimura, Y., Kimura, M., Takata, T., Kondo, T., and Kubo, T. (2004) Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: constraints on shock conditions and parent body size. Earth and Planetary Science Letters, 227(3-4), 505-515. https://doi.org/10.1016/j.epsl.2004.08.018
  23. Rubin, A.E. (2015) Maskelynite in asteroidal, lunar and planetary basaltic meteorites: An indicator of shock pressure during impact ejection from their parent bodies. Icarus, 257, 221-229. https://doi.org/10.1016/j.icarus.2015.05.010
  24. Sharp, T.G. and DeCarli, P.S. (2006) Shock effects in meteorites. Meteorites and the Early Solar System II, 943, 653-677.
  25. Shoemaker, E.M., Hackman, R.J., and Eggleton, R.E. (1963) Interplanetary correlation of geologic time. Advanced in the Astronautical Sciences, 8, 70-89.
  26. Stoffler, D. (1984) Glasses formed by hypervelocity impact. Journal of Non-Crystalline Solids, 67(1), 465-502. https://doi.org/10.1016/0022-3093(84)90171-6
  27. Stoffler, D. (2000) Maskelynite confirmed as diaplectic glass: Indication for peak shock pressures below 45 GPa in all Martian meteorites. Lunar and Planetary Science Conference, 31, p. 1170.
  28. Stoffler, D., Keil, K., and Edward R.D, S. (1991) Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta, 55(12), 3845-3867. https://doi.org/10.1016/0016-7037(91)90078-J
  29. Stoffler, D. and Langenhorst, F. (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics, 29(2), 155-181. https://doi.org/10.1111/j.1945-5100.1994.tb00670.x
  30. Stoffler, D., Ostertag, R., Jammes, C., Pfannschmidt, G., Gupta, P.R.S., Simon, S.B., Papike, J.J., and Beauchamp, R.H. (1986) Shock metamorphism and petrography of the Shergotty achondrite. Geochimica et Cosmochimica Acta, 50(6), 889-903. https://doi.org/10.1016/0016-7037(86)90371-6
  31. Tomioka, N., Kondo, H., Kunikata, A., and Nagai, T. (2010) Pressure-induced amorphization of albitic plagioclase in an externally heated diamond anvil cell. Geophysical Research Letters, 37, L21301.
  32. Tschermak, G. (1872) Die Meteoriten von Shergotty und Gopalpur. Sitzungsberichte / Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse Abteilung I, 65, 122-146.
  33. Xie, Z. and Sharp, T.G. (2007) Host rock solid-state transformation in a shock-induced melt vein of Tenham L6 chondrite. Earth and Planetary Science Letters, 254(3-4), 433-445. https://doi.org/10.1016/j.epsl.2006.12.001

Cited by

  1. Partial Melting‐Induced Chemical Evolution in Shocked Crystalline and Amorphous Plagioclase From the Lunar Meteorite Mount DeWitt 12007 vol.124, pp.7, 2016, https://doi.org/10.1029/2019je005998