Browse > Article
http://dx.doi.org/10.9727/jmsk.2016.29.3.131

Shock Metamorphism of Plagioclase-maskelynite in the Lunar Meteorite Mount DeWitt 12007  

Kim, Hyun Na (Department of Geoenvironmental Sciences, Kongju National University)
Park, Changkun (Division of Polar Earth-System Sciences, Korea Polar Research Institute)
Publication Information
Journal of the Mineralogical Society of Korea / v.29, no.3, 2016 , pp. 131-139 More about this Journal
Abstract
Detailed knowledge on maskelynite, a glassy phase of plagioclase found in shocked meteorites and impact craters, is essential to understand a shock metamorphism. Here, we explore an inhomogeneous shock metamorphism in the lunar meteorite Mount DeWitt (DEW) 12007 with an aim to understand the formation mechanism of maskelynite. Most plagioclase grains in the DEW 12007 partially amorphized into maskelynite with a unidirectional orientation. Back-scattered electron (BSE) images of maskelynite show a remnant of planar deformation fracture possibly indicating that the maskelynite would be formed by solid-state transformation(i.e., diaplectic glass). Plagioclase with flow texture is also observed along the rim of maskelynite, which would be a result of recrystallization of melted plagioclase. Results of Raman experiments suggest that shock pressure for plagioclase and maskelynite in the DEW 12007 is approximately 5-32 GPa and 26-45 GPa, respectively. The difference in shock pressures between plagioclase and maskelynite can be originated from 1) external factors such as inhomogeneous shock pressure and/or 2) internal factors such as chemical composition and porosity of rock. Unfortunately, Raman spectroscopy has a limitation in revealing the detailed atomic structure of maskelynite such as development of six- or five-coordinated aluminum atom upon various shock pressure. Further studies using nuclear magnetic resonance spectroscopy are necessary to understand the formation mechanism of maskelynite under high pressure.
Keywords
maskelynite; lunar meteorite; shock metamorphism; amorphization; Raman spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Beck, P., Gillet, P., El Goresy, A., and Mostefaoui, S. (2005) Timescales of shock processes in chondritic and martian meteorites. Nature, 435(7045), 1071-1074.   DOI
2 Bunch, T., Cohen, A.J., and Dence, M. (1967) Natural terrestrial maskelynite. American Mineralogist, 52(1-2), 244-253.
3 Chen, M. and El Goresy, A. (2000) The nature of maskelynite in shocked meteorites: not diaplectic glass but a glass quenched from shock-induced dense melt at high pressures. Earth and Planetary Science Letters, 179(3-4), 489-502.   DOI
4 Collareta, A., D'Orazio, M., Gemelli, M., Pack, A., and Folco, L. (2016) High crustal diversity preserved in the lunar meteorite Mount DeWitt 12007 (Victoria Land, Antarctica). Meteoritics & Planetary Science, 51(2), 351-371.   DOI
5 Cygan, R.T., Boslough, M.B., and Kirkpatrick, R.J. (1992) NMR spectroscopy of experimentally shocked quartz and feldspar powders. Proceedings of Lunar and Planetary Science, 22, 127-136.
6 El Goresy, A., Gillet, P., Miyahara, M., Ohtani, E., Ozawa, S., Beck, P., and Montagnac, G. (2013) Shock-induced deformation of Shergottites: Shockpressures and perturbations of magmatic ages on Mars. Geochimica et Cosmochimica Acta, 101, 233-262.   DOI
7 Fritz, J., Greshake, A., and Stoffler, D. (2005) Micro-Raman spectroscopy of plagioclase and maskelynite in Martian meteorites: Evidence of progressive shock metamorphism. Antarctic Meteorite Research, 18, 96-116.
8 Grady, D.E. (1980) Shock deformation of brittle solids. Journal of Geophysical Research: Solid Earth, 85(B2), 913-924.   DOI
9 Greshake, A., Fritz, J., and Stoffler, D. (2004) Petrology and shock metamorphism of the olivine-phyric shergottite Yamato 980459: Evidence for a two-stage cooling and a single-stage ejection history. Geochimica et Cosmochimica Acta, 68(10), 2359-2377.   DOI
10 Grieve, R.A.F., Langenhorst, F., and Stoffler, D. (1996) Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience*. Meteoritics & Planetary Science, 31(1), 6-35.   DOI
11 Horz, F. and Quaide, W.L. (1973) Debye-scherrer investigations of experimentally shocked silicates. The Moon, 6(1), 45-82.   DOI
12 Han, J. (2016) Petrography, geochemistry and age of granophyre clast in the lunar meteorite DEW 12007. Department of Earth System Sciences, Master. Yonsei university.
13 Handke, M. and Mozgawa, W. (1993) Vibrational spectroscopy of the amorphous silicates. Vibrational Spectroscopy, 5(1), 75-84.   DOI
14 Heymann, D. and Horz, F. (1990) Raman-spectroscopy and X-ray diffractometer studies of experimentally produced diaplectic feldspar glass. Physics and Chemistry of Minerals, 17(1), 38-44.   DOI
15 Jaret, S.J., Woerner, W.R., Phillips, B.L., Ehm, L., Nekvasil, H., Wright, S.P., and Glotch, T.D. (2015) Maskelynite formation via solid-state transformation: Evidence of infrared and X-ray anisotropy. Journal of Geophysical Research: Planets, 120(3), 570-587.   DOI
16 McMillan, P. (1984) Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy. American Mineralogist, 69(7-8), 622-644.
17 Kowitz, A., Guldemeister, N., Reimold, W.U., Schmitt, R.T., and Wunnemann, K. (2013) Diaplectic quartz glass and $SiO_2$ melt experimentally generated at only 5 GPa shock pressure in porous sandstone: Laboratory observations and meso-scale numerical modeling. Earth and Planetary Science Letters, 384, 17-26.   DOI
18 Kubo, T., Kimura, M., Kato, T., Nishi, M., Tominaga, A., Kikegawa, T., and Funakoshi, K.-I. (2010) Plagioclase breakdown as an indicator for shock conditions of meteorites. Nature Geoscience, 3(1), 41-45.   DOI
19 Lee, S.K., Cody, G.D., Fei, Y.W., and Mysen, B.O. (2004) Nature of polymerization and properties of silicate melts and glasses at high pressure. Geochimica et Cosmochimica Acta, 68(20), 4189-4200.   DOI
20 Milton, D.J. and de Carli, P.S. (1963) Maskelynite: Formation by explosive shock. Science, 140(3567), 670-671.   DOI
21 Min, K. and Lee, S.R. (2010) (U-Th)/He dating on martian meteorites: A review and perspective. Journal of Petrological Soceity of Korea, 16(4), 255-267 (in Korean with English abstract).
22 Ohtani, E., Kimura, Y., Kimura, M., Takata, T., Kondo, T., and Kubo, T. (2004) Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: constraints on shock conditions and parent body size. Earth and Planetary Science Letters, 227(3-4), 505-515.   DOI
23 Rubin, A.E. (2015) Maskelynite in asteroidal, lunar and planetary basaltic meteorites: An indicator of shock pressure during impact ejection from their parent bodies. Icarus, 257, 221-229.   DOI
24 Sharp, T.G. and DeCarli, P.S. (2006) Shock effects in meteorites. Meteorites and the Early Solar System II, 943, 653-677.
25 Stoffler, D., Keil, K., and Edward R.D, S. (1991) Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta, 55(12), 3845-3867.   DOI
26 Shoemaker, E.M., Hackman, R.J., and Eggleton, R.E. (1963) Interplanetary correlation of geologic time. Advanced in the Astronautical Sciences, 8, 70-89.
27 Stoffler, D. (1984) Glasses formed by hypervelocity impact. Journal of Non-Crystalline Solids, 67(1), 465-502.   DOI
28 Stoffler, D. (2000) Maskelynite confirmed as diaplectic glass: Indication for peak shock pressures below 45 GPa in all Martian meteorites. Lunar and Planetary Science Conference, 31, p. 1170.
29 Stoffler, D. and Langenhorst, F. (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics, 29(2), 155-181.   DOI
30 Stoffler, D., Ostertag, R., Jammes, C., Pfannschmidt, G., Gupta, P.R.S., Simon, S.B., Papike, J.J., and Beauchamp, R.H. (1986) Shock metamorphism and petrography of the Shergotty achondrite. Geochimica et Cosmochimica Acta, 50(6), 889-903.   DOI
31 Tomioka, N., Kondo, H., Kunikata, A., and Nagai, T. (2010) Pressure-induced amorphization of albitic plagioclase in an externally heated diamond anvil cell. Geophysical Research Letters, 37, L21301.
32 Tschermak, G. (1872) Die Meteoriten von Shergotty und Gopalpur. Sitzungsberichte / Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse Abteilung I, 65, 122-146.
33 Xie, Z. and Sharp, T.G. (2007) Host rock solid-state transformation in a shock-induced melt vein of Tenham L6 chondrite. Earth and Planetary Science Letters, 254(3-4), 433-445.   DOI