• Title/Summary/Keyword: Robustness test

Search Result 350, Processing Time 0.027 seconds

A Study on the Impact of Business Cycle on Corporate Credit Spreads (글로벌 회사채 스프레드에 대한 경기요인 영향력 분석: 기업 신용스프레드에 대한 경기사이클의 설명력 추정을 중심으로)

  • Jae-Yong Choi
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.3
    • /
    • pp.221-240
    • /
    • 2023
  • Purpose - This paper investigates how business cycle impacts on corporate credit spreads since global financial crisis. Furthermore, it tests how the impact changes by the phase of the cycle. Design/methodology/approach - This study collected dataset from Barclays Global Aggregate Bond Index through the Bloomberg. It conducted multi-regression analysis by projecting business cycle using Hodrick-Prescott filtering and various cyclical variables, while ran dynamic analysis of 5-variable Vector Error Correction Model to confirm the robustness of the test. Findings - First, it proves to be statistically significant that corporate credit spreads have moved countercyclicaly since the crisis. Second, It indicates that the corporate credit spread's countercyclicality to the macroeconomic changes works symmetrically by the phase of the cycle. Third, the VECM supports that business cycle's impact on the spreads maintains more sustainably than other explanatory variable does in the model. Research implications or Originality - It becomes more appealing to accurately measure the real economic impact on corporate credit spreads as the interaction between credit and business cycle deepens. The economic impact on the spreads works symmetrically by boom and bust, which implies that the market stress could impact as another negative driver during the bust. Finally, the business cycle's sustainable impact on the spreads supports the fact that the economic recovery is the key driver for the resilience of credit cycle.

MRU-Net: A remote sensing image segmentation network for enhanced edge contour Detection

  • Jing Han;Weiyu Wang;Yuqi Lin;Xueqiang LYU
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3364-3382
    • /
    • 2023
  • Remote sensing image segmentation plays an important role in realizing intelligent city construction. The current mainstream segmentation networks effectively improve the segmentation effect of remote sensing images by deeply mining the rich texture and semantic features of images. But there are still some problems such as rough results of small target region segmentation and poor edge contour segmentation. To overcome these three challenges, we propose an improved semantic segmentation model, referred to as MRU-Net, which adopts the U-Net architecture as its backbone. Firstly, the convolutional layer is replaced by BasicBlock structure in U-Net network to extract features, then the activation function is replaced to reduce the computational load of model in the network. Secondly, a hybrid multi-scale recognition module is added in the encoder to improve the accuracy of image segmentation of small targets and edge parts. Finally, test on Massachusetts Buildings Dataset and WHU Dataset the experimental results show that compared with the original network the ACC, mIoU and F1 value are improved, and the imposed network shows good robustness and portability in different datasets.

Quantitative analysis and validation of naproxen tablets by using transmission raman spectroscopy

  • Jaejin Kim;Janghee Han;Young-Chul Lee;Young-Ah Woo
    • Analytical Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.114-122
    • /
    • 2024
  • A transmission Raman spectroscopy-based quantitative model, which can analyze the content of a drug product containing naproxen sodium as its active pharmaceutical ingredient (API), was developed. Compared with the existing analytical method, i.e., high-performance liquid chromatography (HPLC), Raman spectroscopy exhibits high test efficiency owing to its shorter sample pre-treatment and measurement time. Raman spectroscopy is environmentally friendly since samples can be tested rapidly via a nondestructive method without sample preparation using solvent. Through this analysis method, rapid on-site analysis was possible and it could prevent the production of defective tablets with potency problems. The developed method was applied to the assays of the naproxen sodium of coated tablets that were manufactured in commercial scale and the content of naproxen sodium was accurately predicted by Raman spectroscopy and compared with the reference analytical method such as HPLC. The method validation of the new approach was also performed. Further, the specificity, linearity, accuracy, precision, and robustness tests were conducted, and all the results were within the criteria. The standard error of cross-validation and standard error of prediction values were determined as 0.949 % and 0.724 %, respectively.

A New Robust Blind Crypto-Watermarking Method for Medical Images Security

  • Mohamed Boussif;Oussema Boufares;Aloui Noureddine;Adnene Cherif
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.93-100
    • /
    • 2024
  • In this paper, we propose a novel robust blind crypto-watermarking method for medical images security based on hiding of DICOM patient information (patient name, age...) in the medical imaging. The DICOM patient information is encrypted using the AES standard algorithm before its insertion in the medical image. The cover image is divided in blocks of 8x8, in each we insert 1-bit of the encrypted watermark in the hybrid transform domain by applying respectively the 2D-LWT (Lifting wavelet transforms), the 2D-DCT (discrete cosine transforms), and the SVD (singular value decomposition). The scheme is tested by applying various attacks such as noise, filtering and compression. Experimental results show that no visible difference between the watermarked images and the original images and the test against attack shows the good robustness of the proposed algorithm.

Development of Unmanned Aerial Vehicle System Integration Laboratory(UAV SIL) for the Integrated Verification (무인항공기 체계의 통합검증을 위한 무인항공기 체계통합실험실(UAV SIL) 개발)

  • Jae Ick Shim;Hee Chae Woo;Sang Jin Kim;Sang Jun Jung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.70-79
    • /
    • 2024
  • This paper describes the results of the development of the the unmanned aerial vehicle system integration laboratory(UAV SIL) for the integrated verification. This UAV SIL is designed to test the robustness of the UAV system including the operational logics and the flight control system behaviors under many abnormal and emergency conditions such as data-link losses, airborne subsystem failures, engine shut down conditions, and ground control station faults. This paper presents how to build the UAV SIL and how to verify the in-development UAV system through the UAV SIL.

Real-time online damage localisation using vibration measurements of structures under variable environmental conditions

  • K. Lakshmi
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.227-241
    • /
    • 2024
  • Safety and structural integrity of civil structures, like bridges and buildings, can be substantially enhanced by employing appropriate structural health monitoring (SHM) techniques for timely diagnosis of incipient damages. The information gathered from health monitoring of important infrastructure helps in making informed decisions on their maintenance. This ensures smooth, uninterrupted operation of the civil infrastructure and also cuts down the overall maintenance cost. With an early warning system, SHM can protect human life during major structural failures. A real-time online damage localization technique is proposed using only the vibration measurements in this paper. The concept of the 'Degree of Scatter' (DoS) of the vibration measurements is used to generate a spatial profile, and fractal dimension theory is used for damage detection and localization in the proposed two-phase algorithm. Further, it ensures robustness against environmental and operational variability (EoV). The proposed method works only with output-only responses and does not require correlated finite element models. Investigations are carried out to test the presented algorithm, using the synthetic data generated from a simply supported beam, a 25-storey shear building model, and also experimental data obtained from the lab-level experiments on a steel I-beam and a ten-storey framed structure. The investigations suggest that the proposed damage localization algorithm is capable of isolating the influence of the confounding factors associated with EoV while detecting and localizing damage even with noisy measurements.

Malwares Attack Detection Using Ensemble Deep Restricted Boltzmann Machine

  • K. Janani;R. Gunasundari
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.64-72
    • /
    • 2024
  • In recent times cyber attackers can use Artificial Intelligence (AI) to boost the sophistication and scope of attacks. On the defense side, AI is used to enhance defense plans, to boost the robustness, flexibility, and efficiency of defense systems, which means adapting to environmental changes to reduce impacts. With increased developments in the field of information and communication technologies, various exploits occur as a danger sign to cyber security and these exploitations are changing rapidly. Cyber criminals use new, sophisticated tactics to boost their attack speed and size. Consequently, there is a need for more flexible, adaptable and strong cyber defense systems that can identify a wide range of threats in real-time. In recent years, the adoption of AI approaches has increased and maintained a vital role in the detection and prevention of cyber threats. In this paper, an Ensemble Deep Restricted Boltzmann Machine (EDRBM) is developed for the classification of cybersecurity threats in case of a large-scale network environment. The EDRBM acts as a classification model that enables the classification of malicious flowsets from the largescale network. The simulation is conducted to test the efficacy of the proposed EDRBM under various malware attacks. The simulation results show that the proposed method achieves higher classification rate in classifying the malware in the flowsets i.e., malicious flowsets than other methods.

Source term inversion of nuclear accidents based on ISAO-SAELM model

  • Dong Xiao;Zixuan Zhang;Jianxin Li;Yanhua Fu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3914-3924
    • /
    • 2024
  • The release source term of radioactivity becomes a critical foundation for emergency response and accident consequence assessment after a nuclear accident Rapidly and accurately inverting the source term remains an urgent scientific challenge. Today source term inversion based on meteorological data and gamma dose rate measurements is a common method. But gamma dose rate actually includes all nuclides information, and the composition of radioactive nuclides is generally uncertain. This paper introduces a novel nuclear accident source term inversion model, which is Improve Snow Ablation Optimizer-Sensitivity Analysis Pruning Extreme Learning Machine (ISAO-SAELM) model. The model inverts the release rates of 11 radioactive nuclides (I-131, Xe-133, Cs-137, Kr-88, Sr-91, Te-132, Mo-99, Ba-140, La-140, Ce-144, Sb-129). It does not require the use of the physical field of the reactor to obtain prior information and establish a dispersion model. And the robustness is validated through noise analysis test. The mean absolute errors of the release rates of 11 nuclides are 15.52 %, 15.28 %, 15.70 %, 14.99 %, 14.85 %, 15.61 %, 15.96 %, 15.42 %, 15.84 %, 15.13 %, 17.72 %, which show the significant superiority of ISAO-SAELM. ISAO-SAELM model not only achieves notable advancements in accuracy but also receives validation in terms of practicality and feasibility.

Development of droplets detection system using deep learning (딥러닝 기반 감수지 액적 자동 인식 시스템 개발)

  • Baek-Gyeom Seong;Xiongzhe Han;Seung-Hwa Yu;Chun-Gu Lee;Yeongho Kang;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.4
    • /
    • pp.174-181
    • /
    • 2024
  • This study aimed to develop a real-time, drone-based pesticide spraying performance evaluation system applicable in field conditions. To achieve robust detection performance across domain discrepancies and noise, we employed self-supervised learning techniques. The training dataset was collected through a drone spraying test designed to capture droplets on water-sensitive paper and comprised processed ground-truth data and field data captured under various environmental conditions. For practical use in real-world applications, we adopted a lightweight model that can be used in embedded computers. Comparative testing with varied environmental spraying datasets showed that the proposed system demonstrated greater robustness in detecting droplets under diverse, irregular field conditions. With continued research, this system is expected to evolve to deliver even higher detection precision and adaptability across varied environment.

Construction and Evaluation of Custom Cybersecurity AI Dataset for Ransomware Detection Using Machine Learning

  • Niringiye Godfrey;Bruce Ndibanje;HoonJae Lee;ByungGook Lee
    • International journal of advanced smart convergence
    • /
    • v.13 no.4
    • /
    • pp.68-81
    • /
    • 2024
  • Ransomware is one of the most significant cybersecurity threats facing the world. In this research we designed and constructed a custom cybersecurity AI dataset for ransomware detection. We then evaluated the dataset using different machine learning models. The dataset was constructed using Cuckoo Sandbox where raw ransomware samples were analyzed to extract key features such as API calls, DLL usage, file operations, network activity, process creation and registry changes. These were then carefully labeled as either ransomware or benign. For evaluation purposes, the custom cybersecurity AI dataset was utilized to train and test various machine learning models. The dataset was split into 80% for training and 20% for testing. Logistic Regression, Random Forest, K-Nearest Neighbors (KNN), and XGBoost models were used to evaluate the resulting custom Cybersecurity AI Dataset. We obtained higher results of accuracy, precision, recall, and F1 scores evaluation metrics. Moreover, our results demonstrate the robustness of a combination of well-designed custom Cybersecurity AI Datasets and machine learning techniques in enhancing ransomware detection mechanisms as well as providing a framework for future cybersecurity applications