• Title/Summary/Keyword: Robustness Index

Search Result 135, Processing Time 0.022 seconds

Establishment of Resilient Infrastructures for the Mitigation of an Urban Water Problem: 2. Robustness Assessment of Structural Alternatives for the Problems of Water Pollution (도시 물 문제 저감을 위한 회복탄력적 사회기반시설 구축: 2. 수질오염 문제 구조적 대안의 내구성 평가)

  • Jung, Jihyeun;Lee, Changmin;An, Jinsung;Kim, Jae Young;Choi, Yongju
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.3
    • /
    • pp.182-188
    • /
    • 2016
  • This study evaluated structural alternatives for managing water quality problems by reinterpreting and then applying the robustness-cost index (RCI) for urban flood problems. Cases of endogenous hormone pollution in treated sewage and proliferation of protozoa in intake-water were chosen as representative examples because they have different types of regulation standards for the treatment. Current facilities and structural alternatives with robustness indices (RIs) greater than unity were determined to be robust. The RI was combined with the cost index (CI) to obtain the RCI values. For the endogenous hormone pollution in treated sewage, a human-oriented estrogen $17{\beta}$-estradiol was selected as a target pollutant. The RI and RCI values for a structural alternative, extension of the current sewage treatment facility for advanced treatment, were greater than the values for the current practice of conventional activated sludge process. For the intake-water pollution by protozoa, UV and ozone disinfection facilities were evaluated for inactivation of Cryptosporidium parvum. The RCI values for ozone disinfection were greater than those for UV disinfection. Based on the results and the logics involved in the calculation of RCI for water quality issues we studied, we proposed procedures for establishing and implementing structural alternatives for the restoration from and prevention of outbreaks of water quality problems.

Robust Multi-Watermarking Method Based on Vector Quantization Using Index Transform Function (인덱스 변환 함수를 이용한 벡터 양자화 기반의 견고한 다중 워터마킹 방법)

  • Bae Sung-Ho;Song Kun-Woen
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.513-520
    • /
    • 2005
  • In this paper, we propose a robust multi-watermarking method based on vector quantization using an index transform function. In contrast with the conventional watermark embedding methods to embed only one watermark at a time into the original image, we present a method to embed multiple watermarks for copyright protection. The proposed method efficiently enhances the robustness by index transform function which minimizes changes of vector quantization indices against various attacks. Experimental results show that the proposed method has a good robustness against various attacks compared with the conventional multi-watermarking method based on vector quantization.

An Efficient Selective Method for Audio Watermarking Against De-synchronization Attacks

  • Mushgil, Baydaa Mohammad;Adnan, Wan Azizun Wan;Al-hadad, Syed Abdul-Rahman;Ahmad, Sharifah Mumtazah Syed
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.476-484
    • /
    • 2018
  • The high capacity audio watermarking algorithms are facing a main challenge in satisfying the robustness against attacks especially on de-synchronization attacks. In this paper, a robust and a high capacity algorithm is proposed using segment selection, Stationary Wavelet Transform (SWT) and the Quantization Index Modulation (QIM) techniques along with new synchronization mechanism. The proposed algorithm provides enhanced trade-off between robustness, imperceptibility, and capacity. The achieved watermarking improves the reliability of the available watermarking methods and shows high robustness towards signal processing (manipulating) attacks especially the de-synchronization attacks such as cropping, jittering, and zero inserting attacks. For imperceptibility evaluation, high signal to noise ratio values of above 22 dB has been achieved. Also subjective test with volunteer listeners shows that the proposed method has high imperceptibility with Subjective Difference Grade (SDG) of 4.76. Meanwhile, high rational capacity up to 176.4 bps is also achieved.

Robust Optimization Using Supremum of the Objective Function for Nonlinear Programming Problems (비선형계획법에서 목적함수의 상한함수를 이용한 강건최적설계)

  • Lee, Se Jung;Park, Gyung Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.535-543
    • /
    • 2014
  • In the robust optimization field, the robustness of the objective function emphasizes an insensitive design. In general, the robustness of the objective function can be achieved by reducing the change of the objective function with respect to the variation of the design variables and parameters. However, in conventional methods, when an insensitive design is emphasized, the performance of the objective function can be deteriorated. Besides, if the numbers of the design variables are increased, the numerical cost is quite high in robust optimization for nonlinear programming problems. In this research, the robustness index for the objective function and a process of robust optimization are proposed. Moreover, a method using the supremum of linearized functions is also proposed to reduce the computational cost. Mathematical examples are solved for the verification of the proposed method and the results are compared with those from the conventional methods. The proposed approach improves the performance of the objective function and its efficiency.

Improved Reliable SVD-Based Watermark Scheme For Ownership Verification (소유권 확인을 위한 향상된 고신뢰성 SVD 기반 워터마킹기법)

  • Luong, Ngoc Thuy Dung;Sohn, Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.82-84
    • /
    • 2016
  • We propose a new reliable SVD-based watermarking scheme having high fidelity and strong robustness with no false-positive problem. Each column of the principal component of a watermark image is embedded into singular values of LL, LH, HL and HH sub-bands of cover image with different scale factors. Each scale factor is optimized by trading-off fidelity and robustness using Differential Evolution (DE) algorithm. The proposed scheme improves fidelity and robustness of existing reliable SVD based watermarking schemes without any false-positive problem. Index Terms - watermarking, reliable SVD, DWT, principal component, Differential Evolution.

  • PDF

High-Capacity and Robust Watermarking Scheme for Small-Scale Vector Data

  • Tong, Deyu;Zhu, Changqing;Ren, Na;Shi, Wenzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6190-6213
    • /
    • 2019
  • For small-scale vector data, restrictions on watermark scheme capacity and robustness limit the use of copyright protection. A watermarking scheme based on robust geometric features and capacity maximization strategy that simultaneously improves capacity and robustness is presented in this paper. The distance ratio and angle of adjacent vertices are chosen as the watermark domain due to their resistance to vertex and geometric attacks. Regarding watermark embedding and extraction, a capacity-improved strategy based on quantization index modulation, which divides more intervals to carry sufficient watermark bits, is proposed. By considering the error tolerance of the vector map and the numerical accuracy, the optimization of the capacity-improved strategy is studied to maximize the embedded watermark bits for each vertex. The experimental results demonstrated that the map distortion caused by watermarks is small and much lower than the map tolerance. Additionally, the proposed scheme can embed a copyright image of 1024 bits into vector data of 150 vertices, which reaches capacity at approximately 14 bits/vertex, and shows prominent robustness against vertex and geometric attacks for small-scale vector data.

Development and assessment of water management resilience of mid-small scale tributaries (지류 중소하천의 물관리 탄력성 평가지수 개발 및 평가)

  • Park, Jung Eun;Lee, Eul Rae;Lim, Kwang Suop
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.95-106
    • /
    • 2016
  • Water Management Resilience Index (WMRI) was developed as a policy measure of adaptability to withstand water stresses and to set up water management strategies mainly in mid-small scale tributaries, and then evaluated on 117 sub-basins in South Korea. The index consists of 3 sub-indices such as vulnerability, robustness and redundancy sub-indices, each including indicators of 3 sectors: water use, flood mitigation, and river environment. Total number of indicators selected for the index was 31. Taking into account the stream order and control capability of river flow discharge, sub-basins were categorized into 3: 1 for mainstreams of lower large dams, 2 and 3 for tributaries, respectively without and with flow discharge regulation. As a result of the evaluation, resilience index scores in Category 2 and 3 are much lower than that of Category 1, especially with very poor score of redundancy. Although there was no significant difference between mainstream and tributaries in vulnerability and robustness sub-indices, results of redundancy sub-index in tributaries were lower than those in mainstream. Thus, it is conceived that the variety of water management schemes should be considered to improve their resilience in the face of future uncertainty. Addressing comprehensive stability of river basin against internal and external impacts, WMRI in this study can also be used for the prioritization of water management plans.

A Quantitative Performance Index for Discrete-time Observer-based Monitoring Systems (이산관측기에 근거한 감지시스템을 위한 정량적 성능지표)

  • Huh, Kun-Soo;Kim, Sang-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.138-148
    • /
    • 1995
  • While Model-based Monitoring systems based on state observer theory have shown much promise in the laboratory, they have not been widely accepted by industry because, inpractice, these systems often have poor performance with respect to accuracy, band-width, reliability(false alarms), and robustness. In this paper, the linitations of the deterministic discrete-time state observer are investigated quantitatively from the machine monitoring viewpoint. The limitations in the transient and steady-state observer performance are quantified as estimation error bounds from which performance indices are selected. Each index represents the conditioning of the corresponding performance. By utilizing matrix norm theory, an unified main index is determined, that dominates all the indices. This index could from the basis for an observer design methodology that should improve the performance of model-based monitoring systems.

  • PDF

선형 다변수 시스템의 강인한 최적 안정기의 설계

  • 이재혁;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.467-472
    • /
    • 1989
  • In this study, a design method to obtain a robust optimal regulator for linear multivariable system is presented. When assigning eigenvalues of linear multivatiable system , the feedback gain is not unique. So we can assign robustness index to optimality so that we can fully use the remained degree of freedom.

  • PDF

Development of a Robust Multiple Audio Watermarking Using Improved Quantization Index Modulation and Support Vector Machine (개선된 QIM과 SVM을 이용한 공격에 강인한 다중 오디오 워터마킹 알고리즘 개발)

  • Seo, Ye-Jin;Cho, San-Gjin;Chong, Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.2
    • /
    • pp.63-68
    • /
    • 2015
  • This paper proposes a robust multiple audio watermarking algorithm using improved QIM(quantization index modulation) with adaptive stepsize for different signal power and SVM(support vector machine) decoding model. The proposed algorithm embeds watermarks into both frequency magnitude response and frequency phase response using QIM. This multiple embedding method can achieve a complementary robustness. The SVM decoding model can improve detection rate when it is not sure whether the extracted data are the watermarks or not. To evaluate robustness, 11 attacks are employed. Consequently, the proposed algorithm outperforms previous multiple watermarking algorithm, which is identical to the proposed one but without SVM decoding model, in PSNR and BER. It is noticeable that the proposed algorithm achieves improvements of maximum PSNR 7dB and BER 10%.