• Title/Summary/Keyword: Robust parameter design

Search Result 508, Processing Time 0.025 seconds

Automatic Door System Performance Improvement Study by the disturbance compensation (외란보상을 통한 자동문 시스템 성능 개선연구)

  • Park, Won-Hyeon;Kim, Min;Jeong, Jae-Hoon;Lee, Dong Heon;Choi, Myoung Hoon;Lim, Jae Jun;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.734-736
    • /
    • 2016
  • Doors are in various buildings, such as large retail stores, hospitals, restaurants, government offices and is used as a door to provide convenience for customers, the convenience of security to control doors and exterior access Castle, etc. In the case of housing door facilities It has been used widely. However, the conventional automatic door controller Although the primary use of the PID control, the contact size and weight depending on the location to cause an instability in the system controller or the like, and disturbance of parameter variation and uncertain dynamics because of the wide variations. In this paper, we design a robust controller to compensate for uncertainties and to compensate for the disturbance.

  • PDF

Calculation of Detector Positions for a Source Localizing Radiation Portal Monitor System Using a Modified Iterative Genetic Algorithm

  • Jeon, Byoungil;Kim, Jongyul;Lim, Kiseo;Choi, Younghyun;Moon, Myungkook
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.212-221
    • /
    • 2017
  • Background: This study aims to calculate detector positions as a design of a radioactive source localizing radiation portal monitor (RPM) system using an improved genetic algorithm. Materials and Methods: To calculate of detector positions for a source localizing RPM system optimization problem is defined. To solve the problem, a modified iterative genetic algorithm (MIGA) is developed. In general, a genetic algorithm (GA) finds a globally optimal solution with a high probability, but it is not perfect at all times. To increase the probability to find globally optimal solution rather, a MIGA is designed by supplementing the iteration, competition, and verification with GA. For an optimization problem that is defined to find detector positions that maximizes differences of detector signals, a localization method is derived by modifying the inverse radiation transport model, and realistic parameter information is suggested. Results and Discussion: To compare the MIGA and GA, both algorithms are implemented in a MATLAB environment. The performance of the GA and MIGA and that of the procedures supplemented in the MIGA are analyzed by computer simulations. The results show that the iteration, competition, and verification procedures help to search for globally optimal solutions. Further, the MIGA is more robust against falling into local minima and finds a more reliably optimal result than the GA. Conclusion: The positions of the detectors on an RPM for radioactive source localization are optimized using the MIGA. To increase the contrast of the measurements from each detector, a relationship between the source and the detectors is derived by modifying the inverse transport model. Realistic parameters are utilized for accurate simulations. Furthermore, the MIGA is developed to achieve a reliable solution. By utilizing results of this study, an RPM for radioactive source localization has been designed and will be fabricated soon.

Fuzzy Controller Design of PC Based for Solar Tracking System (태양 추적시스템을 위한 PC 기반의 퍼지제어기 설계)

  • Chung, Dong-Hwa;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.86-94
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy based on PC in of order to increase an output of the PV(Photovoltaic) array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studies. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

Modified Pharmacokinetic/Pharmacodynamic model for electrically activated silver-titanium implant system

  • Tan, Zhuo;Orndorff, Paul E.;Shirwaiker, Rohan A.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.3
    • /
    • pp.127-141
    • /
    • 2015
  • Silver-based systems activated by low intensity direct current continue to be investigated as an alternative antimicrobial for infection prophylaxis and treatment. However there has been limited research on the quantitative characterization of the antimicrobial efficacy of such systems. The objective of this study was to develop a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model providing the quantitative relationship between the critical system parameters and the degree of antimicrobial efficacy. First, time-kill curves were experimentally established for a strain of Staphylococcus aureus in a nutrientrich fluid environment over 48 hours. Based on these curves, a modified PK/PD model was developed with two components: a growing silver-susceptible bacterial population and a depreciating bactericidal process. The test of goodness-of-fit showed that the model was robust and had good predictability ($R^2>0.7$). The model demonstrated that the current intensity was positively correlated to the initial killing rate and the bactericidal fatigue rate of the system while the anode surface area was negatively correlated to the fatigue rate. The model also allowed the determination of the effective range of these two parameters within which the system has significant antimicrobial efficacy. In conclusion, the modified PK/PD model successfully described bacterial growth and killing kinetics when the bacteria were exposed to the electrically activated silver-titanium implant system. This modeling approach as well as the model itself can also potentially contribute to the development of optimal design strategies for other similar antimicrobial systems.

Neural network based numerical model updating and verification for a short span concrete culvert bridge by incorporating Monte Carlo simulations

  • Lin, S.T.K.;Lu, Y.;Alamdari, M.M.;Khoa, N.L.D.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.293-303
    • /
    • 2022
  • As infrastructure ages and traffic load increases, serious public concerns have arisen for the well-being of bridges. The current health monitoring practice focuses on large-scale bridges rather than short span bridges. However, it is critical that more attention should be given to these behind-the-scene bridges. The relevant information about the construction methods and as-built properties are most likely missing. Additionally, since the condition of a bridge has unavoidably changed during service, due to weathering and deterioration, the material properties and boundary conditions would also have changed since its construction. Therefore, it is not appropriate to continue using the design values of the bridge parameters when undertaking any analysis to evaluate bridge performance. It is imperative to update the model, using finite element (FE) analysis to reflect the current structural condition. In this study, a FE model is established to simulate a concrete culvert bridge in New South Wales, Australia. That model, however, contains a number of parameter uncertainties that would compromise the accuracy of analytical results. The model is therefore updated with a neural network (NN) optimisation algorithm incorporating Monte Carlo (MC) simulation to minimise the uncertainties in parameters. The modal frequency and strain responses produced by the updated FE model are compared with the frequency and strain values on-site measured by sensors. The outcome indicates that the NN model updating incorporating MC simulation is a feasible and robust optimisation method for updating numerical models so as to minimise the difference between numerical models and their real-world counterparts.

Design of a Neural Network PI Controller for F/M of Heavy Water Reactor Actuator Pressure (신경회로망과 PI제어기를 이용한 중수로 핵연료 교체 로봇의 구동압력 제어)

  • Lim, Dae-Yeong;Lee, Chang-Goo;Kim, Young-Baik;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1255-1262
    • /
    • 2012
  • Look into the nuclear power plant of Wolsong currently, it is controlled in order to required operating pressure with PI controller. PI controller has a simple structure and satisfy design requirements to gain setting. However, It is difficult to control without changing the gain from produce changes in parameters such as loss of the valves and the pipes. To solve these problems, the dynamic change of the PI controller gain, or to compensate for the PI controller output is desirable to configure the controller. The aim of this research and development in the parameter variations can be controlled to a stable controller design which is reduced an error and a vibration. Proposed PI/NN control techniques is the PI controller and the neural network controller that combines a parallel and the neural network controller part is compensated output of the controller for changes in the parameters were designed to be robust. To directly evaluate the controller performance can be difficult to test in real processes to reflect the characteristics of the process. Therefore, we develope the simulator model using the real process data and simulation results when compared with the simulated process characteristics that showed changes in the parameters. As a result the PI/NN controller error and was confirmed to reduce vibrations.

Robust and Non-fragile $H_{\infty}$ Decentralized Fuzzy Model Control Method for Nonlinear Interconnected System with Time Delay (시간지연을 가지는 비선형 상호연결시스템의 견실비약성 $H_{\infty}$ 분산 퍼지모델 제어기법)

  • Kim, Joon-Ki;Yang, Seung-Hyeop;Kwon, Yeong-Sin;Bang, Kyung-Ho;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.64-72
    • /
    • 2010
  • In general, due to the interactions among subsystems, it is difficult to design an decentralized controller for nonlinear interconnected systems. In this study, the model of nonlinear interconnected systems is studied via decentralized fuzzy control method with time delay and polytopic uncertainty. First, the nonlinear interconnected system is represented by an equivalent Takagi-Sugeno type fuzzy model. And the represented model can be rewritten as Parameterized Linear Matrix Inequalities(PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting fuzzy controller guarantees the asymptotic stability and disturbance attenuation of the closed-loop system in spite of controller gain variations within a resulted polytopic region by example and simulations.

A Bayesian Approach to Gumbel Mixture Distribution for the Estimation of Parameter and its use to the Rainfall Frequency Analysis (Bayesian 기법을 이용한 혼합 Gumbel 분포 매개변수 추정 및 강우빈도해석 기법 개발)

  • Choi, Hong-Geun;Uranchimeg, Sumiya;Kim, Yong-Tak;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.249-259
    • /
    • 2018
  • More than half of annual rainfall occurs in summer season in Korea due to its climate condition and geographical location. A frequency analysis is mostly adopted for designing hydraulic structure under the such concentrated rainfall condition. Among the various distributions, univariate Gumbel distribution has been routinely used for rainfall frequency analysis in Korea. However, the distributional changes in extreme rainfall have been globally observed including Korea. More specifically, the univariate Gumbel distribution based rainfall frequency analysis is often fail to describe multimodal behaviors which are mainly influenced by distinct climate conditions during the wet season. In this context, we purposed a Gumbel mixture distribution based rainfall frequency analysis with a Bayesian framework, and further the results were compared to that of the univariate. It was found that the proposed model showed better performance in describing underlying distributions, leading to the lower Bayesian information criterion (BIC) values. The mixed Gumbel distribution was more robust for describing the upper tail of the distribution which playes a crucial role in estimating more reliable estimates of design rainfall uncertainty occurred by peak of upper tail than single Gumbel distribution. Therefore, it can be concluded that the mixed Gumbel distribution is more compatible for extreme frequency analysis rainfall data with two or more peaks on its distribution.