• Title/Summary/Keyword: Robust manufacturing

Search Result 330, Processing Time 0.021 seconds

Tension Control in a Nonlinear Web Transfer System (비선형 웹 이송 시스템의 장력 제어)

  • 윤석찬
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.65-72
    • /
    • 2000
  • This paper presents the study of the tension control in a web transfer system. In this study the sliding mode controller is applied to a time-varying nonlinear mathematical model. The model was derived to consider the effects of changing the roll radius in tension variation during winding and unwinding. The uncertainty in modeling may be due to unmodelled dynamics, on variations in system model. Designed sliding mode controller made the system error always staying in the suggested surface from the beginning. Through this, system is maintained to be robust against a disturbance and uncertainty. To verify the designed controller has a good performance, various inputs such as desired velocity, step input, and trapezoidal input are applied. When the sliding mode controller was used, the system(the tension control) performance was improved comparing to the PID controller. The robustness of the controller with respect to an estimation error was verified through simulations.

  • PDF

Development of Vision System Model for Manipulator's Assemble task (매니퓰레이터의 조립작업을 위한 비젼시스템 모델 개발)

  • 장완식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.10-18
    • /
    • 1997
  • This paper presents the development of real-time estimation and control details for a computer vision-based robot control method. This is accomplished using a sequential estimation scheme that permits placement of these points in each of the two-dimensional image planes of monitoring cameras. Estimation model is developed based on a model that generalizes know 4-axis Scorbot manipulator kinematics to accommodate unknown relative camera position and orientation, etc. This model uses six uncertainty-of-view parameters estimated by the iteration method. The method is tested experimentally in two ways : First the validity of estimation model is tested by using the self-built test model. Second, the practicality of the presented control method is verified in performing 4-axis manipulator's assembly task. These results show that control scheme used is precise and robust. This feature can open the door to a range of application of multi-axis robot such as deburring and welding.

  • PDF

Development of Automatic Welding Machine for Fish Trap Frame and Comparison of Shear Strength between Manual and Automatic Work at Welding Point (통발프레임 자동용접장비개발과 용접점에서 수작업과 자동작업의 전단강도 비교에 관한 연구)

  • Han, Chang-Min;Lee, Sang-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.129-134
    • /
    • 2017
  • The process of producing a fish trap frame is very complicated and manual, so it is expensive, the quality of the product is unstable, the quality is not guaranteed, the durability is weak, and it cannot be used for a long time. Therefore, we made a fish trap frame-making machine to reduce the manpower and costs and to make robust products. This machine cuts the wire of mild steel to a certain size and then makes the connecting parts into a trapezoid shape by spot welding. In this study, the weld point shear strength between manual and automatic operation was compared and analyzed.

Genetic algorithms for optimization : a case study of machine-part group formation problems (기계-부품군 형성문제의 사례를 통한 유전 알고리즘의 최적화 문제에의 응용)

  • 한용호;류광렬
    • Korean Management Science Review
    • /
    • v.12 no.2
    • /
    • pp.105-127
    • /
    • 1995
  • This paper solves different machine-part group formation (MPGF) problems using genetic algorithms to demonstrate that it can be a new robust alternative to the conventional heuristic approaches for optimization problems. We first give an overview of genetic algorithms: Its principle, various considerations required for its implementation, and the method for setting up parameter values are explained. Then, we describe the MPGF problem which are critical to the successful operation of cellular manufacturing or flexible manufacturing systems. We concentrate on three models of the MPGF problems whose forms of the objective function and/or constraints are quite different from each other. Finally, numerical examples of each of the models descibed above are solved by using genetic algorithms. The result shows that the solutions derived by genetic algorithms are comparable to those obtained through problem-specific heuristic methods.

  • PDF

Optimal Planning of Multiple Routes in Flexible Manufacturing System (유연생산 시스템의 최적 복수 경로 계획)

  • Kim Jeongseob
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.4
    • /
    • pp.175-187
    • /
    • 2004
  • We consider the simultaneous selection of part routes for multiple part types in Flexible Manufacturing Systems (FMSs). Using an optimization framework we investigate two alternative route assignment policies. The one, called routing mix policy in the literature, specifies the optimal proportion of each part type to be produced along its alternative routes, assuming that the proportions can be kept during execution. The other one, which we propose and call pallet allocation policy, partitions the pallets assigned to each part type among the routes. The optimization framework used is a nonlinear programming superimposed on a closed queueing network model of an FMS which produces multiple part types with distinct repeated visits to certain workstations. The objective is to maximize the weighted throughput. Our study shows that the simultaneous use of multiple routes leads to reduced bottleneck utilization, improved workload balance, and a significant increase in the FMS's weighted throughput, without any additional capital investments. Based on numerical work, we also conjecture that pallet allocation policy is more robust than routing mix policy, operationally easier to implement, and may yield higher revenues.

Model Reference Adaptive Control of the Pneumatic System with Load Variation (부하 변동 공압계의 모델 기준 적응제어)

  • Oh, Hyeon-il;Kim, In-soo;Kim, Gi-bum
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.57-64
    • /
    • 2015
  • In this paper, a model reference adaptive control (MRAC) scheme is applied for the precise and robust motion control of a pneumatic system with load variation. The reference model for MRAC is designed systematically using linear quadratic Gaussian control with loop transfer recovery (LQG/LTR). The sigmoid function of inverse velocity is used to compensate for the nonlinear friction force between the sliding parts. The experimental results show that MRAC effectively overcame the limit of the PID controller when there was unknown disturbance, including abrupt load variation and model uncertainty in the pneumatic control system.

Design of Non-linear Observer to Estimate Yaw Rate and Sidel Slip Angle (Yaw Rate 및 Side Slip Angle 추정을 위한 비선형 관측기 설계)

  • Song, Jeong-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.48-53
    • /
    • 2012
  • A non-linear vehicle model and an observer are designed to observe the yaw rate and the body side slip angle when a vehicle is turning maneuver in this study. The developed vehicle model is a full car model and has fourteen degree of freedom. A Luenberg observer is applied to develop the observer. The vehicle model is validated with a reference result and shows good accordance. The observer is tested on dry asphalt, wet asphalt and snow paved road. The results prove the performance of observer is robust and reliable.

Position Control System using Neural Network Algorithm for Butterfly Valve (신경망 알고리즘을 이용한 버터플라이 밸브의 위치제어)

  • Choi, Jeong-Ju
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.94-98
    • /
    • 2012
  • Butterfly valves are usually used by the plumbing systems in plant engineering field. Valves are used for controlling the flow rate and pressure of fluid. In order to control the flow rate using butterfly valve, the position control of valve disc should be designed. However, since there are lots of uncertain disturbance in plumbing system, the robust control system should be considered. Therefore, the sliding mode control system using neural network algorithm is proposed in this paper. The proposed control system provides the estimating method using neural network for the unmeasurable disturbance in the plumbing system. The performance of the proposed control system is evaluated through computer simulations.

A Study of Vibration Characteristic for Semiconductor Chip Test Equipment (반도체 칩 검사 장비의 진동 특성 연구)

  • Hong, Sung-Keun;Lee, Chul-Hee;Bak, Jeong-Hyun;Lee, Kwang-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.182-186
    • /
    • 2012
  • This paper aims to analyze the vibration characteristics of the test equipment that inspects any defects in manufactured semiconductor chips and classifies defective chips. This type of equipment should be robust against any vibrations because such vibrations can cause disruption in the process that requires higher precision. 3D model of the structure of the equipment has been used to configure vibration simulation model. Model analysis have been carried out to analyze which part of the equipment is weak against vibration. To minimize the vibration effect of the equipment, the thickness of the plate consist of the equipment and weights are modified. The results show that thicker plate and higher weight in the equipment can decrease vibration effect.

Development of a Measurement System for Curved Ship Hull Plates with Multi-Slit Structured Light (다중 슬릿 구조화 광원을 이용한 곡판 측정장치 개발)

  • Lee, Hyunho;Lee, Don Jin;Huh, Man Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.292-299
    • /
    • 2013
  • The measurement in the manufacturing process of curved ship hull plates still depends on wooden templates as a standard instrument. The metrology-enabled automation in the shipbuilding process has been challenged instead of line measurement with wooden templates. The developed measurement system consists of a CCD camera, multiple structured laser sources and 3-DOF motion device. The system carries out measurement of curved profiles for large scale plates by an optical triangulation method. The results of experiment conducted in a manufacturing shop demonstrate the accurate and robust performance.