International journal of advanced smart convergence
/
제9권2호
/
pp.203-211
/
2020
This study proposes a method for estimating gender and age that is robust to various external environment changes by applying deep learning-based learning. To improve the accuracy of the proposed algorithm, an improved CNN network structure and learning method are described, and the performance of the algorithm is also evaluated. In this study, in order to improve the learning method based on CNN composed of 6 layers of hidden layers, a network using GoogLeNet's inception module was constructed. As a result of the experiment, the age estimation accuracy of 5,328 images for the performance test of the age estimation method is about 85%, and the gender estimation accuracy is about 98%. It is expected that real-time age recognition will be possible beyond feature extraction of face images if studies on the construction of a larger data set, pre-processing methods, and various network structures and activation functions have been made to classify the age classes that are further subdivided according to age.
본 논문은 DID(Difference in Differences) 추정모형을 이용하여 유럽공동체 25개 회원국에 대해 2005년~2007년간 1단계 시행이 완료된 바 있는 배출권거래제도가 참여 국가들의 이산화탄소 배출량을 감소시키는 효과가 있었는지를 분석하였다. 이를 위해 이러한 배출권거래제 1단계 시행이 적용되지 않았던 17개국을 포함한 유럽 대륙 42개국에 대한 1990년~2007년까지의 패널자료를 구축하였다. 추정결과를 도출함에 있어서 계열 상관이 존재하는 경우 DID 추정에서 발생할 수 있는 통상적 표준오차의 편차 문제를 고려하여 두 가지의 강건한 표준오차 값들을 추가적으로 계산하여 제시하였다. 그 결과 배출권거래제의 시행이 이산화탄소 배출량을 감소시키는 효과가 표준오차의 계산방법에 무관하게 상당히 일관되고 강건하게 나타나는 것으로 분석되었다. 아울러 잠재에너지세율의 증가 역시 일관되게 일인당 이산화탄소 배출량을 감소시키는 효과가 있는 것으로 나타났다. 반면에 일인당 GDP나 인구밀도 등이 일인당 이산화탄소 배출량에 미치는 영향은 표준오차의 계산방법에 따라 일관되지 못한 결과를 나타내었다. 특히 환경쿠즈네츠가설은 강건한 표준오차를 사용하는 경우 통계적으로 뒷받침되지 못하였다.
본 논문에서는 FVQ-DHMM(fuzzy vector quantization-discrete hidden Markov model)에서 강인한 출력확률의 추정을 위해서 코드워드 종속 거리 정규화와 출력확률에 대한 instar 형태의 퍼지 평활화 방법을 제안한다. FVQ-DHMM은 DHMM의 변형된 모델로, 상태별 출력확률이 입력패턴에 대한 각 코드워드와의 가중치와 출력확률의 곱에 대한 합의 형태로 추정된다. FVQ-DHMM의 성능이 가중치 요소와 상태별 출력분포에 영향을 받으므로, 가중치 요소와 상태별 출력분포를 강인하게 추정하는 방법이 필요하게 된다. 실험결과, 제안된 코드워드 종속 거리 정규화(CDDN : codeword dependent distance normalization)를 적용한 방법이 기존의 FVQ-DHMM에 비해 24%의 오인식률 감소가 있었으며, 상태별 출력분포에 대해서 평활화를 적용한 경우 79%의 오식율을 감소 시킴을 알 수 있었다. 이러한 결과는 제안된 CDDN과 퍼지 평활화의 사용이 향상된 인식율을 얻는데 주요하며, 결과적으로 제안된 방법이 FVQ-HMM을 위한 강인한 출력확률의 추정을 위한 대안으로 유용함을 보여준다고 할 수 있다.
논문에서는 최근에 무선 센서 관련 연구에서 제안된 높은 정확도를 가진 센서 간의 클락 동기 기술을 멀티스태틱 레이더 시스템을 위한 무선 시간동기 알고리즘에 적용을 고려하고 특히 비가시선 상에 있는 노드들 간에 적용 될 수 없는 기존 이론의 한계를 극복하는 알고리즘을 제안한다. 제안된 알고리즘에서는 두 노드에서의 얻어진 타임 스탬프 관찰 결과 정보를 바탕으로 recursive robust least M-estimation (RLM) 기법을 이용하여 두 개의 센서 노드 간의 상대적인 클락 스큐(skew)와 위상 차이를 추정한다. 그 과정에서 NLOS 환경으로 인해 uplink와 downlink시에 발생하는 지연시간의 차이를 추적하여 억제시킴으로써 알고리즘의 성능 향상시킨다. 또한 mean square error (MSE)를 계산하여 알고리즘의 성능을 기존 maximum-liklihood (ML) 기법을 이용한 알고리즘과 비교 분석한다.
The IDRS provides detection, classification and bearing/range estimation by performing wavefront curvature analysis on an intercepted active transmission from target. Especially, a estimate of the target bearing/range that significantly affects the optimal operation of own submarine is required. Target bearing/range can be estimated by wavefront curvature ranging which use the difference of time arrival at sensors. But estimation ambiguity occur in bearing/range estimation due to a number of peaks caused by high center frequency and limited bandwidth of the intercepted active transmission and distortion caused by noise. As a result the bearing/range estimation performance is degraded. To estimate target bearing/range correctly, bearing/range estimation method that eliminate estimation ambiguity is required. In this paper, therefore, for wavefront curvature ranging, NLS cost function with curve fitting method is proposed, which provide robust bearing/range estimation performance by eliminating estimation ambiguity. Through simulation the performance of the proposed bearing/range estimation methods are verified.
본 논문에서는 대기 속도 센서가 없는 항공기에서의 강인 필터 기반의 바람 추정 기법을 제안한다. 바람 속도(wind velocity)는 항공기의 유도 및 제어를 더욱 정밀하게 수행하기 위해 사용되는 정보이다. 일반적으로 바람 속도는, 대기 속도와 지면 속도의 차이를 계산하여 얻을 수 있다. 이때 대기 속도는 피토 튜브와 같은 항공기와 대기의 상대 속도를 측정하는 대기 속도 측정 센서에서 얻을 수 있고, 지면 속도는 항법 시스템으로부터 얻을 수 있다. 그러나 항공기의 구성을 간단하게하기 위하여 대기 속도 측정 센서를 장착하지 않는 경우, 바람 속도를 직접적으로 얻을 수 없기 때문에 필터를 이용한 바람 추정 기법이 필수이다. 이때 난류에 의해 항공기의 공력 계수가 변하게 되는데, 이는 바람 추정 필터의 시스템 모델의 불확실성을 유발하게 되고, 결국 바람 추정 성능이 저하된다. 따라서 본 연구에서는 공력계수 불확실성에 강인함을 확보하기 위해 $H{\infty}$ 필터를 적용한 바람 추정 기법을 제안하였다. 시뮬레이션을 통해 제안하는 기법이 공력계수의 불확실성이 있는 상황에서 성능을 개선하는 것을 확인하였다.
In most vision applications, we are frequently confronted with determining the position of object continuously. Generally, intertwined processes ire needed for target tracking, composed with tracking and control process. Each of these processes can be studied independently. In case of actual implementation we must consider the interaction between them to achieve robust performance. In this paper, the robust real time visual tracking in complex background is considered. A common approach to increase robustness of a tracking system is to use known geometric models (CAD model etc.) or to attach the marker. In case an object has arbitrary shape or it is difficult to attach the marker to object, we present a method to track the target easily as we set up the color and shape for a part of object previously. Robust detection can be achieved by integrating voting-based visual cues. Kalman filter is used to estimate the motion of moving object in 3D space, and this algorithm is tested in a pan/tilt robot system. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.
Journal of the Korean Data and Information Science Society
/
제10권1호
/
pp.233-241
/
1999
본 논문에서는 공정평균을 관리하기 위한 관리도로서 지수가중 이동평균(EWMA)관리도를 고려하였다. 기존의 표본평균에 기초한 관리도의 비로버스트성 (non-robustness)에 근거하여 공정평균의 로버스트 추정량인 M-추정량에 기초한 지수가중 이동평균 관리도를 제안하였다. 제안된 관리도의 성능을 기존의 관리도와 비교해 보기 위하여 다양한 상황에서 모의실험을 행하였으며, 실험결과 제안된 관리도의 우수성이 입증되었다.
본 논문은 시점을 달리 하는 두 이미지 사이의 다중 호모그래피 관계를 RANSAC을 이용하여 동시에 추정하는 새로운 방안을 제안한다. 이상치가 많이 포함된 데이터에 대해서도 강건한 파라미터 추정이 가능한 RANSAC 알고리즘은 단일 모델에 대해서만 적용되는 제약을 가진다. 따라서, 이미지에 존재하는 여러 평면의 2D 투영 변환 관계들을 추정하기 위해서는 RANSAC 알고리즘을 순차적으로 수행해야 한다. 이 과정에서 데이터에 지속적으로 포함되는 이상치들은 모델 추정을 느리게 한다. 또한, 모델들은 적합치 비율에 의해 순차적으로 추정되기 때문에 알고리즘의 병렬화가 어렵다는 문제가 있다. 본 논문에서는 RANSAC 알고리즘의 수행 과정에서 찾아낸 부분적인 모델 관계를 이용하여 반복 시도 횟수를 줄이고 다중 호모그래피들을 동시에 추정할 수 있는 가이드된 순차 RANSAC 알고리즘을 제시한다.
음성신호는 주변 잡음과 화자의 발성 패턴 변화, 음성 검출 오류에서 생기는 이상치(outlier)에 많은 영향을 받고 있다. 이러한 음성 신호를 이용하여 화자인식에 이용할 경우 인식률이 저하된다. 본 논문에서는 화자식별 (speaker identification)에서 학습 특징 벡터의 이상치와 고차원 문제를 해결하기 위하여 M-추정을 이용한 강인한 주성분 분석 가우시안 혼합모델 (Robust Principal Component Analysis-Gaussian Mixture Model)방법을 제안하였다. 제안된 방법은 먼저, 특징 벡터에 이상치가 존재할 경우 M-추정에 의하여 강인한 공분산 행렬을 재추정하여 얻어진 고유벡터로부터 변환 행렬을 구하여 감소된 차원을 갖는 새로운 특징벡터를 구한다. 여기에서 얻은 선형변환된 특징벡터로부터 화자의 가우시안 혼합 모델을 구한다. 제안된 방법의 성능을 검증하기 위하여 화자식별 실험을 하였다. 실험은 전형적인 가우시안 혼합 모델 방법과 주성분 분석법, 제안된 방법을 비교 분석하였다. 이상치가 2%씩 증가할 때마다 가우시안 혼합모델 방법과 주성분 분석법은 각각 0.65%, 0.55%씩 화자식별 성능이 저하되었지만, 제안된 방법은 0.03%정도 감소하였으므로 이상치에 더욱 강인함을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.