• Title/Summary/Keyword: Robust estimation

Search Result 1,081, Processing Time 0.025 seconds

Robust Model Based Fault Detection of EPB System for Varying Temperature (온도변화에 강인한 EPB 시스템의 모델기반 고장검출 방법)

  • Moon, Byoung-Joon;Park, Chong-Kug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.26-30
    • /
    • 2009
  • In this paper, a robust model based fault detection for varying temperature is proposed, To develop a robust force estimation model, it needs temperature information because the force sensor's output is affected by a temperature variation. If an EPB system does not include a temperature sensor, the model has a much larger error than an EPB system with a built-in temperature sensor. Therefore, the temperature is estimated by using Ohm's law. The force model is applied with a motor current, battery voltage, operation mode, and the estimated temperature to detect a force sensor's abnormal signal fault. The residual is calculated by comparing the value of the measured force and the estimated force. Fault information is collected by using the output of the evaluated residual with the adaptive thresholds. A proposed robust model based fault detection for varying temperature was verified by HILS (Hardware in the Loop Simulation).

Robust Estimation Algorithm for Switching Signal and State of Discrete-time Switched Linear Systems (이산 시간 선형 스위치드 시스템의 스위칭 신호 및 상태에 대한 강인한 추정 알고리즘)

  • Lee, Chanhwa;Shim, Hyungbo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.214-221
    • /
    • 2015
  • In this paper, we present robust estimation and detection algorithms for discrete-time switched linear systems whose output measurements are corrupted by noises. First, a mode estimation algorithm is proposed based on the minimum distance criterion. Then, state variables are also observed under the active mode estimate. Second, a detection algorithm is constructed to detect the mode switching of the switched system. With the boundedness of measurement noise, the proposed estimation algorithm returns the exact active mode and approximate state information of the switched system. In addition, the detection algorithm can detect the switching time within a pre-determined time interval after the actual switching occurred.

Cell ID Detection and SNR Estimation Algorithms Robust to Noise (잡음에 강인한 셀 아이디 검출 및 SNR 추정 알고리즘)

  • Lee, Chong-Hyun;Bae, Jin-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.139-145
    • /
    • 2010
  • In this paper, we propose robust cell ID detection algorithm and SNR estimation algorithm applicable to mobile base station, which can be operated independently. The proposed cell ID estimation uses signal subspace to estimate cell IDs used in cell. The proposed SNR estimation algorithm uses number of noise subspace vectors and the corresponding eigen-vectors. Through the computer simulations, we showed that performance of the proposed cell ID detection and SNR estimation algorithms are superior to existing correlation based algorithms. Also we showed that the proposed algorithm is suitable to fast moving channel in high background noise and strong interference signal.

Quasi-Optimal Linear Recursive DOA Tracking of Moving Acoustic Source for Cognitive Robot Auditory System (인지로봇 청각시스템을 위한 의사최적 이동음원 도래각 추적 필터)

  • Han, Seul-Ki;Ra, Won-Sang;Whang, Ick-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • This paper proposes a quasi-optimal linear DOA (Direction-of-Arrival) estimator which is necessary for the development of a real-time robot auditory system tracking moving acoustic source. It is well known that the use of conventional nonlinear filtering schemes may result in the severe performance degradation of DOA estimation and not be preferable for real-time implementation. These are mainly due to the inherent nonlinearity of the acoustic signal model used for DOA estimation. This motivates us to consider a new uncertain linear acoustic signal model based on the linear prediction relation of a noisy sinusoid. Using the suggested measurement model, it is shown that the resultant DOA estimation problem is cast into the NCRKF (Non-Conservative Robust Kalman Filtering) problem [12]. NCRKF-based DOA estimator provides reliable DOA estimates of a fast moving acoustic source in spite of using the noise-corrupted measurement matrix in the filter recursion and, as well, it is suitable for real-time implementation because of its linear recursive filter structure. The computational efficiency and DOA estimation performance of the proposed method are evaluated through the computer simulations.

Exploring modern machine learning methods to improve causal-effect estimation

  • Kim, Yeji;Choi, Taehwa;Choi, Sangbum
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.177-191
    • /
    • 2022
  • This paper addresses the use of machine learning methods for causal estimation of treatment effects from observational data. Even though conducting randomized experimental trials is a gold standard to reveal potential causal relationships, observational study is another rich source for investigation of exposure effects, for example, in the research of comparative effectiveness and safety of treatments, where the causal effect can be identified if covariates contain all confounding variables. In this context, statistical regression models for the expected outcome and the probability of treatment are often imposed, which can be combined in a clever way to yield more efficient and robust causal estimators. Recently, targeted maximum likelihood estimation and causal random forest is proposed and extensively studied for the use of data-adaptive regression in estimation of causal inference parameters. Machine learning methods are a natural choice in these settings to improve the quality of the final estimate of the treatment effect. We explore how we can adapt the design and training of several machine learning algorithms for causal inference and study their finite-sample performance through simulation experiments under various scenarios. Application to the percutaneous coronary intervention (PCI) data shows that these adaptations can improve simple linear regression-based methods.

A Robust Staff Line Height and Staff Line Space Estimation for the Preprocessing of Music Score Recognition (악보인식 전처리를 위한 강건한 오선 두께와 간격 추정 방법)

  • Na, In-Seop;Kim, Soo-Hyung;Nquyen, Trung Quy
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • In this paper, we propose a robust pre-processing module for camera-based Optical Music Score Recognition (OMR) on mobile device. The captured images likely suffer for recognition from many distortions such as illumination, blur, low resolution, etc. Especially, the complex background music sheets recognition are difficult. Through any symbol recognition system, the staff line height and staff line space are used many times and have a big impact on recognition module. A robust and accurate staff line height and staff line space are essential. Some staff line height and staff line space are proposed for binary image. But in case of complex background music sheet image, the binarization results from common binarization algorithm are not satisfactory. It can cause incorrect staff line height and staff line space estimation. We propose a robust staff line height and staff line space estimation by using run-length encoding technique on edge image. Proposed method is composed of two steps, first step, we conducted the staff line height and staff line space estimation based on edge image using by Sobel operator on image blocks. Each column of edge image is encoded by run-length encoding algorithm Second step, we detect the staff line using by Stable Path algorithm and removal the staff line using by adaptive Line Track Height algorithm which is to track the staff lines positions. The result has shown that robust and accurate estimation is possible even in complex background cases.

Integrated Position Estimation Using the Aerial Image Sequence (항공영상을 이용한 통합된 위치 추정)

  • Sim, Dong-Gyu;Park, Rae-Hong;Kim, Rin-Chul;Lee, Sang-Uk
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.76-84
    • /
    • 1999
  • This paper presents an integrated method for aircraft position estimation using sequential aerial images. The proposed integrated system for position estimation is composed of two parts: relative position estimation and absolute position estimation. Relative position estimation recursively computes the current position of an aircraft by accumulating relative displacement estimates extracted from two successive aerial images. Simple accumulation of parameter values decreases reliability of the extracted parameter estimates as an aircraft goes on navigating, resulting in large position error. Therefore absolute position estimation is required to compensate for the position error generated in relative position estimation. Absolute position estimation algorithms by image matching or digital elevation model (DEM) matching are presented. In image matching, a robust oriented Hausdorff measure (ROHM) is employed whereas in DEM matching an algorithm using multiple image pairs is used. Computer simulation with four real aerial image sequences shows the effectiveness of the proposed integrated position estimation algorithm.

  • PDF

Frequency Domain Channel Estimation for MIMO SC-FDMA Systems with CDM Pilots

  • Kim, Hyun-Myung;Kim, Dongsik;Kim, Tae-Kyoung;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.447-457
    • /
    • 2014
  • In this paper, we investigate the frequency domain channel estimation for multiple-input multiple-output (MIMO) single-carrier frequency-division multiple-access (SC-FDMA) systems. In MIMO SC-FDMA, code-division multiplexed (CDM) pilots such as cyclic-shifted Zadoff-Chu sequences have been adopted for channel estimation. However, most frequency domain channel estimation schemes were developed based on frequency-division multiplexing of pilots. We first develop a channel estimation error model by using CDM pilots, and then analyze the mean-square error (MSE) of various minimum MSE (MMSE) frequency domain channel estimation techniques. We show that the cascaded one-dimensional robust MMSE (C1D-RMMSE) technique is complexity-efficient, but it suffers from performance degradation due to the channel correlation mismatch when compared to the two-dimensional MMSE (2D-MMSE) technique. To improve the performance of C1D-RMMSE, we design a robust iterative channel estimation (RITCE) with a frequency replacement (FR) algorithm. After deriving the MSE of iterative channel estimation, we optimize the FR algorithm in terms of the MSE. Then, a low-complexity adaptation method is proposed for practical MIMO SC-FDMA systems, wherein FR is performed according to the reliability of the data estimates. Simulation results show that the proposed RITCE technique effectively improves the performance of C1D-RMMSE, thus providing a better performance-complexity tradeoff than 2D-MMSE.

Robust Estimation and Outlier Detection

  • Myung Geun Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 1994
  • The conditional expectation of a random variable in a multivariate normal random vector is a multiple linear regression on its predecessors. Using this fact, the least median of squares estimation method developed in a multiple linear regression is adapted to a multivariate data to identify influential observations. The resulting method clearly detect outliers and it avoids the masking effect.

  • PDF

Robust $H_{\infty}$ Control for Bilinear Systems with Parameter Uncertainties via output Feedback

  • Kim, Young-Joong;Lee, Su-Gu;Chang, Sae-Kwon;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.386-391
    • /
    • 2003
  • This paper focuses on robust $H_{\infty}$ control for bilinear systems with time-varying parameter uncertainties and exogenous disturbance via output feedback. $H_{\infty}$ control is achieved via separation into a $H_{\infty}$ state feedback control problem and a $H_{\infty}$ state estimation problem. The suitable robust stabilizing output feedback control law can be constructed in term of approximated solution to x-dependent Riccati equation using successive approximation technique. Also, the $H_{\infty}$ filter gain can be constructed in term of solution to algebraic Riccati equation. The output feedback control robustly stabilizes the plant and guarantees a robust $H_{\infty}$ performance for the closed-loop systems in the face of parameter uncertainties and exogenous disturbance.

  • PDF