• Title/Summary/Keyword: Robust control

Search Result 3,759, Processing Time 0.031 seconds

On the Robust Stability of the Optimal Digital Linear Regulator Having L Sample Controlling Delays. (L샘츨의 제어늦음을 갖는 다지탈 최적 선형 Regulator의 Robust 안전성)

  • 이동철;정형환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.6
    • /
    • pp.437-443
    • /
    • 1987
  • Due to the recent development of microprocessor, the digital control is now in use for the practical structure of the control systems, but it leaves the problem of controlling delays caused by computation time when it is applied to the realization problems, such as application method of the control law and controlling effect of continuous control, etc. This paper deals with robust stability of the digital regulator which compensates for the controlling delays by applying prediction values of state.

  • PDF

Robust adaptive control for a stable nonminimum phase system (안정한 비최소 위상 시스템의 견실한 적응제어)

  • 최종호;김호찬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.255-260
    • /
    • 1988
  • A robust adaptive control method for a stable nonminimum phase SISO system with unmodelled dynamics is proposed. The robust parameter estimation method of the system with bounded output noise and unmodelled dynamics is employed and a parallel structure is proposed to improve the robustness of adaptive control system. The local stability of the proposed system is shown. Computer simulations are done in order to compare the performance of the proposed structure with the basic structure on various circumstance.

  • PDF

An improved robust hybrid control for uncertain robot manipulators using the stiffness bound of environments (환경의 강성 경계를 이용한 불확실 로봇 시스템의 개선된 견실 하이브리드 제어)

  • 권택준;한명철;하인철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.259-262
    • /
    • 2001
  • An improved robust hybrid control law is proposed. This law used the separated bounding function and the stiffness bound. It satisfied the performance though we don't know precise information of contact environments. It guarantees the practical stability in sense of Lyapunov. Simulation was performed to validate this law using a four-axis SCARA type robot manipulator.

  • PDF

An Alternative Approach to the Robust Inventory Control Problem

  • Park, Kyungchul
    • Management Science and Financial Engineering
    • /
    • v.20 no.2
    • /
    • pp.1-5
    • /
    • 2014
  • The robust inventory control problem was proposed and solved by Bertsimas and Thiele (2006). Their results are very interesting in that the problem can be solved easily and also the solution possesses nice properties of those found in the traditional stochastic inventory control problem. However, their formulation is shown to be incorrect, which invalidates all of the results given there. In this paper, we propose an alternative formulation of the problem which uses a different but practically applicable uncertainty set. Under the newly proposed model, all of the useful properties given in Bertsimas and Thiele (2006) will be shown to be valid.

Robust control for mismatched uncertain system (불일치 시스템의 견실제어기 설계)

  • 김동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.117-119
    • /
    • 1997
  • We consider the control design for nonlinear uncertain systems. The uncertainty is mismatched and possibly fast time-varying. Within the suitable range of the uncertainty the control is valid. No statistical information on uncertainty is imposed. Only the possible bound of the uncertain parameter is known and the control design is based on Lyapunov approach.

  • PDF

Dynamics Identification and Robust Control Performance Evaluation of Towing Rope under Rope Length Variation

  • Tran, Anh-Minh D.;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • Lately, tugboats are widely used to maneuver vessels by pushing or towing them where tugboats use rope. In order to correctly control the motion of tugboat and towed vessel, the dynamics of the towline would be well identified. In real application environment, the towing rope length changes and the towing load is not constant due to the various sizes of towed vessel. And there are many ropes made by many types of materials. It means that it is not easy to obtain rope dynamics, such that it is too difficult to satisfy the given control purpose by designing control system. Thus real time identification or adaptive control system design method may be a solution. However it is necessary to secure sufficient information about rope dynamics to obtain desirable control performance. In this paper, the authors try to have several rope dynamic models by changing the rope length to consider real application conditions. Among them, a representative model is selected and the others are considered as uncertain models which are considered in control system design. The authors design a robust control to cope with strong uncertain and nonlinear property included in the real plant. The designed control system based on robust control framework is evaluated by simulation.

Experimental Verification on the Availability of Robust Saturation Controller for the Active Vibration Control of Building using AMD (AMD를 이용한 건물의 능동 진동 제어를 위한 강인 포화 제어기의 유용성에 관한 실험적 검증)

  • Lim, Chae-Wook;Moon, Seok-Jun;Park, Youn-Gjin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.83-90
    • /
    • 2006
  • In active vibration control of building, controller design considering both control input saturation of controller and parameter uncertainties of building is needed. In our previous research, we proposed a robust saturation controller which guarantees robust stability and control performance of the uncertain linear time-invariant system in the presence of control input saturation. In this paper, the availability of the robust saturation controller for the building with an active mass damper (AMD) system is verified through experimental tests. Experimental tests are carried oui using a two-story building model with a hydraulic-type AMD.

Robust Control of Flexible Structure Using Dynamic Vibration Absorber (동흡진기를 이용한 유연 구조물의 강건제어)

  • Sim Sangdeok;Kang Hoshik;Jong Namheui;Jang Kangseok;Kim Doohoon;Song Ohseop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1093-1101
    • /
    • 2005
  • Hybrid mass damper systems have recently been introduced as a dynamic vibration absorber to exploit the benefits of both the conventional tuned mass damper system and the active control system. A hybrid system is programmed to function as either a conventional TMD or as an active system according to the wind conditions and the resultant building and damper mass vibration characteristics. This paper deals with the design of the robust controller for the control of the flexible box structure. The control algorithm was devised based on $H_2$(LQG) robust control logic with acceleration feedback and to improve the capability of the controller Kalman Filter was accepted for the system. To test the ability of the robust controller using the linear motor damper system, performance tests and simulations were carried out on the full-scale steel frame structure. Through the performance tests, it was confirmed that acceleration levels are reduced down.

Development of the Robust Speed Controller for Marine Medium Speed Diesel Engines (선박용 중속 디젤 기관의 로바스트 속도제어기 개발)

  • 정병건;양주호;김창화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.27-35
    • /
    • 1996
  • The ship's propulsion efficiency depends upon a combibation of engine and propeller. The propeller has better efficiency as the engine has lower rotational speed. This situation led the engine manufacures to design the engine that has lower speed, longer stroke and a small number of cylinders. With this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variations of the delay-time and the parameter perturbation especially in low speed engine. In this study we consider the perturbations of the engine parameters as the modeling uncetainties and design a robust speed controller for marine medium speed diesel engine by means of $ extit{H}_{infty}$control theory having the central solution. By comparing the results of the robust speed controller with those of mechanical governor and PID controller, the validity of the robust speed controller under parameter variations is confirmed. The speed control of the experimental diesel engine of carried out using actuator which is composed of PWM signal generator and D.C servo motor.

  • PDF

Development of the Robust Speed Controller for Marine Medium Speed Diesel Engines (선박용 중속 디젤 기관의 로바스트 속도제어기 개발)

  • Jung, B.G.;Yang, J.H.;Kim, C.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.349-349
    • /
    • 1996
  • The ship's propulsion efficiency depends upon a combibation of engine and propeller. The propeller has better efficiency as the engine has lower rotational speed. This situation led the engine manufacures to design the engine that has lower speed, longer stroke and a small number of cylinders. With this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variations of the delay-time and the parameter perturbation especially in low speed engine. In this study we consider the perturbations of the engine parameters as the modeling uncetainties and design a robust speed controller for marine medium speed diesel engine by means of $ extit{H}_{infty}$control theory having the central solution. By comparing the results of the robust speed controller with those of mechanical governor and PID controller, the validity of the robust speed controller under parameter variations is confirmed. The speed control of the experimental diesel engine of carried out using actuator which is composed of PWM signal generator and D.C servo motor.