• Title/Summary/Keyword: Robust algorithm

Search Result 2,732, Processing Time 0.032 seconds

Algorithm for the Robust Estimation in Logistic Regression (로지스틱회귀모형의 로버스트 추정을 위한 알고리즘)

  • Kim, Bu-Yong;Kahng, Myung-Wook;Choi, Mi-Ae
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.551-559
    • /
    • 2007
  • The maximum likelihood estimation is not robust against outliers in the logistic regression. Thus we propose an algorithm for the robust estimation, which identifies the bad leverage points and vertical outliers by the V-mask type criterion, and then strives to dampen the effect of outliers. Our main finding is that, by an appropriate selection of weights and factors, we could obtain the logistic estimates with high breakdown point. The proposed algorithm is evaluated by means of the correct classification rate on the basis of real-life and artificial data sets. The results indicate that the proposed algorithm is superior to the maximum likelihood estimation in terms of the classification.

Event diagnosis method for a nuclear power plant using meta-learning

  • Hee-Jae Lee;Daeil Lee;Jonghyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.1989-2001
    • /
    • 2024
  • Artificial intelligence (AI) techniques are now being considered in the nuclear field, but application faces with the lack of actual plant data. For this reason, most previous studies on AI applications in nuclear power plants (NPPs) have relied on simulators or thermal-hydraulic codes to mimic the plants. However, it remains uncertain whether an AI model trained using a simulator can properly work in an actual NPP. To address this issue, this study suggests the use of metadata, which can give information about parameter trends. Referred to here as robust AI, this concept started with the idea that although the absolute value of a plant parameter differs between a simulator and actual NPP, the parameter trend is identical under the same scenario. Based on the proposed robust AI, this study designs an event diagnosis algorithm to classify abnormal and emergency scenarios in NPPs using prototypical learning. The algorithm was trained using a simulator referencing a Westinghouse 990 MWe reactor and then tested in different environments in Advanced Power Reactor 1400 MWe simulators. The algorithm demonstrated robustness with 100 % diagnostic accuracy (117 out of 117 scenarios). This indicates the potential of the robust AI-based algorithm to be used in actual plants.

A Global Robust Optimization Using the Kriging Based Approximation Model (크리깅 근사모델을 이용한 전역적 강건최적설계)

  • Park Gyung-Jin;Lee Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1243-1252
    • /
    • 2005
  • A current trend of design methodologies is to make engineers objectify or automate the decision-making process. Numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, the Taguchi method, reliability-based optimization and robust optimization are being used. To obtain the target performance with the maximum robustness is the main functional requirement of a mechanical system. In this research, a design procedure for global robust optimization is developed based on the kriging and global optimization approaches. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. Robustness is determined by the DACE model to reduce real function calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust design of a surrogated model. As the postprocess, the first order second-moment approximation method is applied to refine the robust optimum. The mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

Robust Audio Copyright Protection Technology to the Time Axis Attack (시간축 공격에 강인한 오디오 저작권보호 기술)

  • Bae, Kyoung-Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.201-212
    • /
    • 2009
  • Even though the spread spectrum method is known as most robust algorithm to general attacks, it has a drawback to the time axis attack. In this paper, I proposed a robust audio copyright protection algorithm which is robust to the time axis attack and has advantages of the spread spectrum method. Time axis attack includes the audio length variation attack with same pitch and the audio frequency variation attack. In order to detect the embedded watermark by the spread spectrum method, the detection algorithm should know the exact rate of the time axis attack. Even if there is a method to know the rate, it needs heavy computational resource and it is not possible to implement. In this paper, solving this problem, the audio signal is transformed into time-invariant domain, and the spread spectrum watermark is embedded into the audio in the domain. Therefore the proposed algorithm has the advantages of the spread spectrum method and it is also robust to the time axis attack. The time-invariant domain process is that the audio is arranged by log scale time axis, and then, the Fourier transform is taken to the audio in the log scale time axis. As a result, the algorithm can get the time-invariant watermark signal.

  • PDF

Performance Analysis of SOVA by Robust Equalization, Techniques in Nongaussian Noise Channel (비가우시안 잡음 채널에서 Robust 등화기법을 이용한 터보 부호의 SOVA 성능분석)

  • Soh, Surng-Ryurl;Lee, Chang-Bum;Kim, Yung-Kwon;Chung, Boo-Young
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.257-265
    • /
    • 2000
  • Turbo Code decoder is an iterate decoding technology, which extracts extrinsic information from the bit to be decoded by calculating both forward and backward metrics in each decoding step, and uses the information to the next decoding step. Viterbi decoder, which is for a convolutional code, runs continuous mode, while Turbo Code decoder runs by block unit. There are algorithms used in a decoder : which are MAP(maximum a posteriori) algorithm requiring very complicated calculation and SOVA(soft output Viterbi algorithm) using Viterbi algorithm suggested by Hagenauer, and it is known that the decoding performance of MAP is better. The result of this make experimentation shows that the performance of SOVA, which has half complex algorithm compare to MAP, is almost same as the performance of MAP when the SOVA decoding performance is supplemented with Robust equalization techniques.

  • PDF

Robust Localization Algorithm for Mobile Robots Using Laser Range Finder (레이저 거리계를 이용한 이동 로봇을 위한 강인한 위치 추정 알고리즘)

  • Kim Byung Kook;Sohn Hee Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.530-542
    • /
    • 2005
  • We proposed a robust localization algorithm for mobile robots using LRF. A novel cost function for localization is suggested, which was used for calculating correct rotation angle and translation vector. We examined validity of our algorithm with various simulations and experiments, and also revealed robustness and accuracy compared to previous localization algorithms.

Design of a Robust Controller for the Butterfly Valve with Considering the Friction (마찰을 고려한 버터플라이 밸브의 강인 제어기 설계)

  • Choi, Jeongju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.824-830
    • /
    • 2013
  • We propose a tracking control system for butterfly valves. A sliding mode controller with a fuzzy-neural network algorithm was applied to the design of the tracking control system. The control scheme used the real-time update law for the unmodeled system dynamics using a fuzzy-neural network algorithm. The performance of the proposed control system was assessed through a range of experiments.

Sliding Mode Controller with Sliding Perturbation Observer Based on Gain Optimization using Genetic Algorithm

  • You, Ki-Sung;Lee, Min-Cheol;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.630-639
    • /
    • 2004
  • The Stewart platform manipulator is a closed-kinematics chain robot manipulator that is capable of providing high structural rigidity and positional accuracy. However, this is a complex and nonlinear system, so the control performance of the system is not so good. In this paper, a new robust motion control algorithm is proposed. The algorithm uses partial state feedback for a class of nonlinear systems with modeling uncertainties and external disturbances. The major contribution is the design of a robust observer for the state and the perturbation of the Stewart platform, which is combined with a variable structure controller (VSC). The combination of controller and observer provides the robust routine called sliding mode control with sliding perturbation observe. (SMCSPO). The optimal gains of SMCSPO, which is determined by nominal eigenvalues, are easily obtained by genetic algorithm. The proposed fitness function that evaluates the gain optimization is to put sliding function. The control performance of the proposed algorithm is evaluated by the simulation and experiment to apply to the Stewart platform. The results showed high accuracy and good performance.

STABLE AUTONOMOUS DRIVING METHOD USING MODIFIED OTSU ALGORITHM

  • Lee, D.E.;Yoo, S.H.;Kim, Y.B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.227-235
    • /
    • 2006
  • In this paper a robust image processing method with modified Otsu algorithm to recognize the road lane for a real-time controlled autonomous vehicle is presented. The main objective of a proposed method is to drive an autonomous vehicle safely irrespective of road image qualities. For the steering of real-time controlled autonomous vehicle, a detection area is predefined by lane segment, with previously obtained frame data, and the edges are detected on the basis of a lane width. For stable as well as psudo-robust autonomous driving with "good", "shady" or even "bad" road profiles, the variable threshold with modified Otsu algorithm in the image histogram, is utilized to obtain a binary image from each frame. Also Hough transform is utilized to extract the lane segment. Whether the image is "good", "shady" or "bad", always robust and reliable edges are obtained from the algorithms applied in this paper in a real-time basis. For verifying the adaptability of the proposed algorithm, a miniature vehicle with a camera is constructed and tested with various road conditions. Also, various highway road images are analyzed with proposed algorithm to prove its usefulness.

A RSS-Based Localization Method Utilizing Robust Statistics for Wireless Sensor Networks under Non-Gaussian Noise (비 가우시안 잡음이 존재하는 무선 센서 네트워크에서 Robust Statistics를 활용하는 수신신호세기기반의 위치 추정 기법)

  • Ahn, Tae-Joon;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.23-30
    • /
    • 2011
  • In the wireless sensor network(WSN), the detection of precise location of sensor nodes is essential for efficiently utilizing the sensing data acquired from sensor nodes. Among various location methods, the received signal strength (RSS) based localization scheme is mostly preferable in many applications since it can be easily implemented without any additional hardware cost. Since the RSS localization method is mainly effected by radio channel between two nodes, outlier data can be included in the received signal strength measurement specially when some obstacles move around the link between nodes. The outlier data can have bad effect on estimating the distance between two nodes such that it can cause location errors. In this paper, we propose a RSS-based localization method using Robust Statistic and Gaussian filter algorithm for enhancing the accuracy of RSS-based localization. In the proposed algorithm, the outlier data can be eliminated from samples by using the Robust Statistics as well as the Gaussian filter such that the accuracy of localization can be achieved. Through simulation, it is shown that the proposed algorithm can increase the accuracy of localization and is more robust to non gaussian noise channels.