• Title/Summary/Keyword: Robust algorithm

Search Result 2,732, Processing Time 0.028 seconds

Robust Optical Flow Detection Using 2D Histogram with Variable Resolution (가변 분해능을 가진 2차원 히스토그램을 이용한 강건한 광류검출)

  • CHON Jaechoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.49-57
    • /
    • 2005
  • The proposed algorithm is to achieve the robust optical flow detection which is applicable for the case that the outlier rate is over 80%. If the outlier rate of optical flows is over 30%, the discrimination between the inliers and outlier with the conventional algorithm is very difficult. The proposed algorithm is to overcome such difficulty with three steps of grouping algorithm; 1) constructing the 2D histogram with two axies of the lengths and the directions of optical flows. 2) sorting the number of optical flows in each bin of the two-dimensional histogram in the descending order and removing some bins with lower number of optical flows than threshold. 3) increasing the resolution of the two-dimensional histogram if the number of optical flows in a specific bin is over 20% and decreasing the resolution if the number of optical flows is less than 10%. Such processing is repeated until the number of optical flows falls into the range of 10%-20% in all the bins. The proposed algorithm works well on the different kinds of images with many of wrong optical flows. Experimental results are included.

Surface Reconstruction from Cross-Sectional Images using the Shrink-Wrapping Algorithm (Shrink-Wrapping 알고리즘을 이용한 단층영상으로부터의 표면 재구성)

  • Park, Eun-Jin;Choi, Young-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.1
    • /
    • pp.28-37
    • /
    • 2007
  • This paper addresses a new surface reconstruction scheme for approximating the isosurface from a set of tomographic cross sectional images. Differently from the novel Marching cube algorithm, our method does not extract iso-density surface(isosurface) directly from the voxels but calculates the iso-density point(isopoint) first. After building the relatively coarse initial mesh by the Cell-boundary algorithm approximating the isosurface, it produces the final isosurface by iteratively shrinking and smoothing the initial mesh. Comparing with the Marching Cube algorithm, our method is robust and does not make any crack in resulting surface model. Furthermore, the proposed method surmounts the O(1)-adjacency limitation of MC in defining the isopoints by permitting the O(2) and O(3)-adjacent isopoints in surface reconstruction, and can produce more accurate isosurface. According to experiments, it is proved to be very robust and efficient for isosurface reconstruction from cross sectional images.

Robust Optical Flow Detection Using 2D histogram with Variable Resolution (가변 분해능을 가진 2차원 히스토그램을 이용한 강건한 광류인식)

  • CHON Jaechoon;KIM Hyongsuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.51-64
    • /
    • 2005
  • The proposed algorithm is to achieve the robust optical flow detection which is applicable for the case that the outlier rate is over $80\%$. If the outlier rate of optical flows is over $30\%$, the discrimination between the inliers and outlier with the conventional algorithm is very difficult. The proposed algorithm is to overcome such difficulty withthree steps of grouping algorithm; 1) constructing the 2 D histogram with two axies of the lengths and the directions of optical flows. 2) sorting the number of optical flows in each bin of the two-dimensional histogram in the descendingorder and removing some bins with lower number of optical flows than threshold 3) increasing the resolution of the two-dimensional histogram if the number of optical flows in a specific bin is over $20\%$ and decreasing theresolution if the number of optical flows is less than $10\%$. Such processing is repeated until the the number of optical flows falls into the range of $10\%-20\%$ in all the bins. The proposed algorithm works well on the different kinds of images with many of wrong optical flows. Experimental results are included.

Region-growing based Hand Segmentation Algorithm using Skin Color and Depth Information (피부색 및 깊이정보를 이용한 영역채움 기반 손 분리 기법)

  • Seo, Jonghoon;Chae, Seungho;Shim, Jinwook;Kim, Hayoung;Han, Tack-Don
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.9
    • /
    • pp.1031-1043
    • /
    • 2013
  • Extracting hand region from images is the first part in the process to recognize hand posture and gesture interaction. Therefore, a good segmenting method is important because it determines the overall performance of hand recognition systems. Conventional hand segmentation researches were prone to changing illumination conditions or limited to the ability to detect multiple people. In this paper, we propose a robust technique based on the fusion of skin-color data and depth information for hand segmentation process. The proposed algorithm uses skin-color data to localize accurate seed location for region-growing from a complicated background. Based on the seed location, our algorithm adjusts each detected blob to fill up the hole region. A region-growing algorithm is applied to the adjusted blob boundary at the detected depth image to obtain a robust hand region against illumination effects. Also, the resulting hand region is used to train our skin-model adaptively which further reduces the effects of changing illumination. We conducted experiments to compare our results with conventional techniques which validates the robustness of the proposed algorithm and in addition we show our method works well even in a counter light condition.

Off-line Handwritten Flowchart Symbol Recognition Algorithm Robust to Variations Based the Normalized Dominant Slope Vector (정규화된 우세한 기울기 벡터를 기반으로 변형에 강건한 오프라인 필기 순서도 기호인식 알고리즘)

  • Lee, Gab-Seob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2831-2838
    • /
    • 2014
  • This paper proposes the off-line handwritten flowchart symbol recognition algorithm by type and strength of a cross region of the straight line strokes that is extracted based the normalized dominant slope vectors. In the proposed algorithm, first of all, a connector symbol which consisted only curves is recognized by the special features, and the other symbols with straight line strokes are recognized by type and strength of a cross region, and that is extracted by extension of minimum bounding rectangle of the clusters of the normalized dominant slope vectors, and the straight line strokes of the symbols is extracted by the normalized dominant slope vectors. To confirm the validity of the proposed algorithm, the experiments are conducted for 10 different kinds of flowchart symbols that mainly used for computer program, and the number of symbols is 198. Experiment results were obtained the recognition rate of 99.5%, and the flowchart symbols is recognized correctly robust to variations, and then the proposed algorithm were found very effective for off-line handwritten flowchart symbol recognition.

A Study on the Robust Sound Localization System Using Subband Filter Bank (서브밴드 필터 뱅크를 이용한 강인한 음원 추적시스템에 대한 연구)

  • 박규식;박재현;온승엽;오상헌
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.36-42
    • /
    • 2001
  • This paper propose new sound localization algorithm that detects the sound source bearing in a closed office environment using two microphone array. The proposed Subband CPSP (Cross Power Spectrum Phase) algorithm is a development of previously Down CPSP method using subband approach. It first split the received microphone signals into subbands and then calculates subband CPSP which result in possible source bearings. This type of algorithm, Subband CPSP, can provide more robust and reliable sound localization system because it limits the effects of environmental noise within each subband. To verify the performance of the proposed Subband CPSP algorithm, a real time simulation was conducted and it was compared with previous CPSP method. From the simulation results, the proposed Subband CPSP is superior to previous CPSP algorithm more than 5% average accuracy for sound source detection.

  • PDF

A Study on Algorithm Robust to Error for Estimating partial Discharge Location using Acoustic Emission Sensors (AE(Acoustic Emission) 센서를 이용한 오차에 강인한 부분방전 위치추정 알고리즘에 관한 연구)

  • Cho, Sung-Min;Shin, Hee-Sang;Kim, Jae-Chul;Lee, Yang-Jin;Kim, Kwang-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.69-75
    • /
    • 2008
  • This paper presents an algorithm robust to error for estimating partial discharge (PD) location using acoustic emission sensors. In operating transformers, the velocity computing of the acoustic signal is difficult because the temperature of the Insulation oil is not homogeneous. So, some error occurs in the process. Therefore, the algorithm estimating PD location must consider this error to provide maintenance person with useful information. The conventional algorithm shows the PD position as a point, while the new algorithm using LookUp-Table(LUT) shows PD position as error-map visually. The error-map is more useful than the conventional result because of robustness to error. Also, we compared performance of them, by adding error to data on purpose.

A new multi-stage SPSO algorithm for vibration-based structural damage detection

  • Sanjideh, Bahador Adel;Hamzehkolaei, Azadeh Ghadimi;Hosseinzadeh, Ali Zare;Amiri, Gholamreza Ghodrati
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.489-502
    • /
    • 2022
  • This paper is aimed at developing an optimization-based Finite Element model updating approach for structural damage identification and quantification. A modal flexibility-based error function is introduced, which uses modal assurance criterion to formulate the updating problem as an optimization problem. Because of the inexplicit input/output relationship between the candidate solutions and the error function's output, a robust and efficient optimization algorithm should be employed to evaluate the solution domain and find the global extremum with high speed and accuracy. This paper proposes a new multi-stage Selective Particle Swarm Optimization (SPSO) algorithm to solve the optimization problem. The proposed multi-stage strategy not only fixes the premature convergence of the original Particle Swarm Optimization (PSO) algorithm, but also increases the speed of the search stage and reduces the corresponding computational costs, without changing or adding extra terms to the algorithm's formulation. Solving the introduced objective function with the proposed multi-stage SPSO leads to a smart feedback-wise and self-adjusting damage detection method, which can effectively assess the health of the structural systems. The performance and precision of the proposed method are verified and benchmarked against the original PSO and some of its most popular variants, including SPSO, DPSO, APSO, and MSPSO. For this purpose, two numerical examples of complex civil engineering structures under different damage patterns are studied. Comparative studies are also carried out to evaluate the performance of the proposed method in the presence of measurement errors. Moreover, the robustness and accuracy of the method are validated by assessing the health of a six-story shear-type building structure tested on a shake table. The obtained results introduced the proposed method as an effective and robust damage detection method even if the first few vibration modes are utilized to form the objective function.

Energy and Statistical Filtering for a Robust Audio Fingerprinting System (강인한 오디오 핑거프린팅 시스템을 위한 에너지와 통계적 필터링)

  • Jeong, Byeong-Jun;Kim, Dae-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.5
    • /
    • pp.1-9
    • /
    • 2012
  • The popularity of digital music and smart phones led to develope noise-robust real-time audio fingerprinting system in various ways. In particular, The Multiple Hashing(MLH) of fingerprint algorithms is robust to noise and has an elaborate structure. In this paper, we propose a filter engine based on MLH to achieve better performance. In this approach, we compose a energy-intensive filter to improve the accuracy of Q/R from music database and a statistic filter to remove continuity and redundancy. The energy-intensive filter uses the Discrite Cosine Transform(DCT)'s feature gathering energy to low-order bits and the statistic filters use the correlation between searched fingerprint's information. Experimental results show that the superiority of proposed algorithm consists of the energy and statistical filtering in noise environment. It is found that the proposed filter engine achieves more robust to noise than Philips Robust Hash(PRH), and a more compact way than MLH.

Digital Audio Watermarking Based on Spread Spectrum Techniques (스프레드 스펙트럼 기반 디지털 오디오 워터마킹 기법 연구)

  • 진창윤;최창렬;정제창
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.257-260
    • /
    • 2001
  • In this paper, we propose a robust audio watermarking method. The proposed watermarking algorithm is composed of a psychoacoustic model to achieve perceptual transparency and spread spectrum technique to embed watermark. The watermark is embedded in each audio frame by adding a perceptually-shaped pseudo-random sequence. We demonstrate the robustness of the watermarking algorithm.

  • PDF