• Title/Summary/Keyword: Robust Term

Search Result 279, Processing Time 0.03 seconds

Efficient Hyperplane Generation Techniques for Human Activity Classification in Multiple-Event Sensors Based Smart Home (다중 이벤트 센서 기반 스마트 홈에서 사람 행동 분류를 위한 효율적 의사결정평면 생성기법)

  • Chang, Juneseo;Kim, Boguk;Mun, Changil;Lee, Dohyun;Kwak, Junho;Park, Daejin;Jeong, Yoosoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.5
    • /
    • pp.277-286
    • /
    • 2019
  • In this paper, we propose an efficient hyperplane generation technique to classify human activity from combination of events and sequence information obtained from multiple-event sensors. By generating hyperplane efficiently, our machine learning algorithm classify with less memory and run time than the LSVM (Linear Support Vector Machine) for embedded system. Because the fact that light weight and high speed algorithm is one of the most critical issue in the IoT, the study can be applied to smart home to predict human activity and provide related services. Our approach is based on reducing numbers of hyperplanes and utilizing robust string comparing algorithm. The proposed method results in reduction of memory consumption compared to the conventional ML (Machine Learning) algorithms; 252 times to LSVM and 34,033 times to LSTM (Long Short-Term Memory), although accuracy is decreased slightly. Thus our method showed outstanding performance on accuracy per hyperplane; 240 times to LSVM and 30,520 times to LSTM. The binarized image is then divided into groups, where each groups are converted to binary number, in order to reduce the number of comparison done in runtime process. The binary numbers are then converted to string. The test data is evaluated by converting to string and measuring similarity between hyperplanes using Levenshtein algorithm, which is a robust dynamic string comparing algorithm. This technique reduces runtime and enables the proposed algorithm to become 27% faster than LSVM, and 90% faster than LSTM.

Performance Assessment of Two-stream Convolutional Long- and Short-term Memory Model for September Arctic Sea Ice Prediction from 2001 to 2021 (Two-stream Convolutional Long- and Short-term Memory 모델의 2001-2021년 9월 북극 해빙 예측 성능 평가)

  • Chi, Junhwa
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1047-1056
    • /
    • 2022
  • Sea ice, frozen sea water, in the Artic is a primary indicator of global warming. Due to its importance to the climate system, shipping-route navigation, and fisheries, Arctic sea ice prediction has gained increased attention in various disciplines. Recent advances in artificial intelligence (AI), motivated by a desire to develop more autonomous and efficient future predictions, have led to the development of new sea ice prediction models as alternatives to conventional numerical and statistical prediction models. This study aims to evaluate the performance of the two-stream convolutional long-and short-term memory (TS-ConvLSTM) AI model, which is designed for learning both global and local characteristics of the Arctic sea ice changes, for the minimum September Arctic sea ice from 2001 to 2021, and to show the possibility for an operational prediction system. Although the TS-ConvLSTM model generally increased the prediction performance as training data increased, predictability for the marginal ice zone, 5-50% concentration, showed a negative trend due to increasing first-year sea ice and warming. Additionally, a comparison of sea ice extent predicted by the TS-ConvLSTM with the median Sea Ice Outlooks (SIOs) submitted to the Sea Ice Prediction Network has been carried out. Unlike the TS-ConvLSTM, the median SIOs did not show notable improvements as time passed (i.e., the amount of training data increased). Although the TS-ConvLSTM model has shown the potential for the operational sea ice prediction system, learning more spatio-temporal patterns in the difficult-to-predict natural environment for the robust prediction system should be considered in future work.

Development of Simulation for Estimating Growth Changes of Locally Managed European Beech Forests in the Eifel Region of Germany (독일 아이펠의 지역적 관리에 따른 유럽너도밤나무 숲의 생장변화 추정을 위한 시뮬레이션 개발)

  • Jae-gyun Byun;Martina Ross-Nickoll;Richard Ottermanns
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.1
    • /
    • pp.1-17
    • /
    • 2024
  • Forest management is known to beneficially influence stand structure and wood production, yet quantitative understanding as well as an illustrative depiction of the effects of different management approaches on tree growth and stand dynamics are still scarce. Long-term management of beech forests must balance public interests with ecological aspects. Efficient forest management requires the reliable prediction of tree growth change. We aimed to develop a novel hybrid simulation approach, which realistically simulates short- as well as long-term effects of different forest management regimes commonly applied, but not limited, to German low mountain ranges, including near-natural forest management based on single-tree selection harvesting. The model basically consists of three modules for (a) natural seedling regeneration, (b) mortality adjustment, and (c) tree growth simulation. In our approach, an existing validated growth model was used to calculate single year tree growth, and expanded on by including in a newly developed simulation process using calibrated modules based on practical experience in forest management and advice from the local forest. We included the following different beech forest-management scenarios that are representative for German low mountain ranges to our simulation tool: (1) plantation, (2) continuous cover forestry, and (3) reserved forest. The simulation results show a robust consistency with expert knowledge as well as a great comparability with mid-term monitoring data, indicating a strong model performance. We successfully developed a hybrid simulation that realistically reflects different management strategies and tree growth in low mountain range. This study represents a basis for a new model calibration method, which has translational potential for further studies to develop reliable tailor-made models adjusted to local situations in beech forest management.

REVIEW OF THE PEER RELATIONSHIP OF CHILD AND ADOLESCENT SCHIZOPHRENIC PATIENTS - FOCUSING CASE STUDIES - (소아 ${\cdot}$ 청소년 정신분열병 환자의 또래 관계에 관한 고찰 - 사례 연구를 중심으로 -)

  • Cho, Soo-Churl;Shin, Sung-Woong
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.11 no.2
    • /
    • pp.262-281
    • /
    • 2000
  • We focused on the peer relationship of adolescent patients with schizophrenia, which usually occurs around puberty. Reviewing cases with schizophrenia and the literature extensively, we had come to the conclusion as follows;1) the most robust predictors among factors influencing the prognosis of schizophrenia are premorbid interpersonal relationship and adaptive functions. 2) Especially teachers’ reports about school life and peer relationship during school life are useful for predicting the occurrence of schizophrenia in adolescents. We described characteristic and behavioral childhood features which are important in pathogenesis of schizophrenia, based on high-risk studies and long term follow-up studies. Also, pathological profiles of the interpersonal relationship and pathology in adulthood were presented. We tried to integrate various aspects of interpersonal and social weaknesses of schizophrenics applying 'primary and secondary socialization' concept. Finally, five cases of adolescent schizophrenics were described briefly and proposal for the early detection and intervention for risk factors was introduced.

  • PDF

Estimation of extreme sea levels at tide-dominated coastal zone (조석이 지배적인 해역의 극치해면 산정)

  • Kang, Ju Whan;Kim, Yang-Seon;Cho, Hongyeon;Shim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.381-389
    • /
    • 2012
  • An EST-based method which is applicable for estimating extreme sea levels from short sea-level records in a tide dominated coastal zone was developed. Via the method, annual maximum tidal level is chosen from the simulated 1-yr tidal data which are constituted by the independent daily high water levels, short term and long term surge heights and typhoon-induced surge heights. The high water levels are generated considering not only spring/neap tides and annual tide but also 18.6-year lunar nodal cycle. Typhoon-induced surges are selected from the training set which is constructed by observed or simulated surge heights. This yearly simulation is repeated many hundred years to yield the extreme tidal levels, and the whole process is carried out many hundred times repeatedly to get robust statistics of the levels. In addition, validation of the method is also shown by comparing the result with other researches with the tidal data of Mokpo Harbor.

Success and Failure of Surgical Endodontic Treatment in Molar Teeth

  • Geum, Yun-Seon;Lee, Jang-Ryeol;Kim, Hyeon-Cheol;Lee, Sang-Cheol;Kim, Yeong-Uk
    • Journal of Korean Dental Science
    • /
    • v.3 no.2
    • /
    • pp.12-19
    • /
    • 2010
  • Despite the latest advancement made in its techniques and devices/apparatuses and the resulting rising expectation in the field of dental surgery, apicoectomy performed in the molar teeth remains a technical challenge and lacks evidence substantiated by long-term follow-up studies. This study sought to investigate the treatment outcomes and post-operative success rate in the root-end resected molar teeth accompanied by a high level of surgical risks due to their close proximity to the mandibular canal and maxillary sinus. A total of 68 patients who received treatment at Livingwell Dental Hospital between 2004 and 2010 and underwent apical surgery in the maxillary or mandibular molar area were enrolled in this study. A total of 160 roots collected from 75 molar teeth were subjected to surgical endodontic treatment and subsequently evaluated clinically as well as radiographically. Based on the results of the study, the clinical success rate was found to be 78.8% in cases involving radiological healing. Likewise, 90.7% of the roots recorded a robust clinical survival rate, but with incomplete healing as shown by radiography. The results indicate that the apical procedure involving molar teeth is a prognosis-friendly method that promises positive outcomes and higher success rate based on long-term follow-up observations.

  • PDF

A Korean speech recognition based on conformer (콘포머 기반 한국어 음성인식)

  • Koo, Myoung-Wan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.488-495
    • /
    • 2021
  • We propose a speech recognition system based on conformer. Conformer is known to be convolution-augmented transformer, which combines transfer model for capturing global information with Convolution Neural Network (CNN) for exploiting local feature effectively. The baseline system is developed to be a transfer-based speech recognition using Long Short-Term Memory (LSTM)-based language model. The proposed system is a system which uses conformer instead of transformer with transformer-based language model. When Electronics and Telecommunications Research Institute (ETRI) speech corpus in AI-Hub is used for our evaluation, the proposed system yields 5.7 % of Character Error Rate (CER) while the baseline system results in 11.8 % of CER. Even though speech corpus is extended into other domain of AI-hub such as NHNdiguest speech corpus, the proposed system makes a robust performance for two domains. Throughout those experiments, we can prove a validation of the proposed system.

A Study on H-CNN Based Pedestrian Detection Using LGP-FL and Hippocampal Structure (LGP-FL과 해마 구조를 이용한 H-CNN 기반 보행자 검출에 대한 연구)

  • Park, Su-Bin;Kang, Dae-Seong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.75-83
    • /
    • 2018
  • Recently, autonomous vehicles have been actively studied. Pedestrian detection and recognition technology is important in autonomous vehicles. Pedestrian detection using CNN(Convolutional Neural Netwrok), which is mainly used recently, generally shows good performance, but there is a performance degradation depending on the environment of the image. In this paper, we propose a pedestrian detection system applying long-term memory structure of hippocampal neural network based on CNN network with LGP-FL (Local Gradient Pattern-Feature Layer) added. First, change the input image to a size of $227{\times}227$. Then, the feature is extracted through a total of 5 layers of convolution layer. In the process, LGP-FL adds the LGP feature pattern and stores the high-frequency pattern in the long-term memory. In the detection process, it is possible to detect the pedestrian more accurately by detecting using the LGP feature pattern information robust to brightness and color change. A comparison of the existing methods and the proposed method confirmed the increase of detection rate of about 1~4%.

A Novel RGB Image Steganography Using Simulated Annealing and LCG via LSB

  • Bawaneh, Mohammed J.;Al-Shalabi, Emad Fawzi;Al-Hazaimeh, Obaida M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.143-151
    • /
    • 2021
  • The enormous prevalence of transferring official confidential digital documents via the Internet shows the urgent need to deliver confidential messages to the recipient without letting any unauthorized person to know contents of the secret messages or detect there existence . Several Steganography techniques such as the least significant Bit (LSB), Secure Cover Selection (SCS), Discrete Cosine Transform (DCT) and Palette Based (PB) were applied to prevent any intruder from analyzing and getting the secret transferred message. The utilized steganography methods should defiance the challenges of Steganalysis techniques in term of analysis and detection. This paper presents a novel and robust framework for color image steganography that combines Linear Congruential Generator (LCG), simulated annealing (SA), Cesar cryptography and LSB substitution method in one system in order to reduce the objection of Steganalysis and deliver data securely to their destination. SA with the support of LCG finds out the optimal minimum sniffing path inside a cover color image (RGB) then the confidential message will be encrypt and embedded within the RGB image path as a host medium by using Cesar and LSB procedures. Embedding and extraction processes of secret message require a common knowledge between sender and receiver; that knowledge are represented by SA initialization parameters, LCG seed, Cesar key agreement and secret message length. Steganalysis intruder will not understand or detect the secret message inside the host image without the correct knowledge about the manipulation process. The constructed system satisfies the main requirements of image steganography in term of robustness against confidential message extraction, high quality visual appearance, little mean square error (MSE) and high peak signal noise ratio (PSNR).

Long-term condition monitoring of cables for in-service cable-stayed bridges using matched vehicle-induced cable tension ratios

  • Peng, Zhen;Li, Jun;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.167-179
    • /
    • 2022
  • This article develops a long-term condition assessment method for stay cables in cable stayed bridges using the monitored cable tension forces under operational condition. Based on the concept of influence surface, the matched cable tension ratio of two cables located at the same side (either in the upstream side or downstream side) is theoretically proven to be related to the condition of stay cables and independent of the positions of vehicles on the bridge. A sensor grouping scheme is designed to ensure that reliable damage detection result can be obtained even when sensor fault occurs in the neighbor of the damaged cable. Cable forces measured from an in-service cable-stayed bridge in China are used to demonstrate the accuracy and effectiveness of the proposed method. Damage detection results show that the proposed approach is sensitive to the rupture of wire damage in a specific cable and is robust to environmental effects, measurement noise, sensor fault and different traffic patterns. Using the damage sensitive feature in the proposed approach, the metrics such as accuracy, precision, recall and F1 score, which are used to evaluate the performance of damage detection, are 97.97%, 95.08%, 100% and 97.48%, respectively. These results indicate that the proposed approach can reliably detect the damage in stay cables. In addition, the proposed approach is efficient and promising with applications to the field monitoring of cables in cable-stayed bridges.