• 제목/요약/키워드: Robust Speed Control System

검색결과 388건 처리시간 0.027초

자기베어링으로 지지되는 연성축계의 식별 및 강인 제어에 관한 연구 (A Study on the Identification and Robust Control of Flexible Rotor Supported by Magnetic Bearing)

  • 안형준;전수;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.3-6
    • /
    • 2000
  • The magnetic bearing system are intrinsically unstable, and need the feedback control of electromagnetic forces with measured displacements. So the controller design plays an important role in constructing high performance magnetic bearing system. In case of magnetic bearing system, the order of identified model is high because of unknown dynamics included in closed loop systems - such as sensor dynamics, actuator dynamics - and non-linearity of magnetic bearings itself. In this paper the identification and robust control of flexible rotor supported by magnetic bearing are discussed. We measure and identify overall system that contains not only flexible rotor model but also magnetic bearing and time delay. The structured and unstructured uncertainties are modeled that cover variations of natural frequencies, uncertainties in sensor and actuator gains and unmodeled dynamics. And desired performances are specified with several weighting function. Using augmented system that includes identified model, uncertainties, and weighting functions, μ-synthesis is applied to flexible rotor supported with magnetic bearing. The flexible rotor was spin up over the first flexible critical speed.

  • PDF

퍼지제어기를 이용한 영구자석 동기전동기의 강인한 속도제어 (Robust Speed Control of a Permanent Magnet Synchronous Motor using a Fuzzy Logic Controller)

  • 최영식;유동녕;정진우
    • 전력전자학회논문지
    • /
    • 제15권5호
    • /
    • pp.343-351
    • /
    • 2010
  • 본 논문에서는 영구자석 동기전동기(PMSM)의 강인한 속도 제어를 위하여 Takagi-Sugeno 퍼지 기법을 이용한 퍼지 속도제어기를 제안한다. 또한 제안된 퍼지 속도제어기는 부하 토크의 정보를 필요로 하므로 2차 부하 토크관측기를 이용하여 부하 토크를 추정한다. 퍼지 속도제어기가 존재하기 위한 LMI 조건을 유도하고, 제어기의 이득이 주어진다. 제안된 퍼지 속도제어기와 부하 토크관측기를 포함하는 확장된 제어시스템의 안정도가 보장됨을 보인다. 본 연구에서 제안된 퍼지 속도제어기의 성능을 검증하기 위하여, 전동기 파라미터 변동 하에서 시뮬레이션 및 실험결과가 주어졌다. 본 결과를 통하여 제안된 제어 기법은 영구자석 동기전동기의 속도를 정확하게 제어할 수 있음을 검증하였다.

Uncertainty Observer using the Radial Basis Function Networks for Induction Motor Control

  • Huh, Sung-Hoe;Lee, Kyo-Beum;Ick Choy;Park, Gwi-Tae;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • 제4권1호
    • /
    • pp.1-11
    • /
    • 2004
  • A stable adaptive sensorless speed controller for three-level inverter fed induction motor direct torque control (DTC) system using the radial-basis function network (RBFN) is presented in this paper. Torque ripple in the DTC system for high power induction motor could be drastically reduced with the foregoing researches of switching voltage selection and torque ripple reduction algorithms. However, speed control performance is still influenced by the inherent uncertainty of the system such as parametric uncertainty, external load disturbances and unmodeled dynamics, and its exact mathematical model is much difficult to be obtained due to their strong nonlinearity. In this paper, the inherent uncertainty is approximated on-line by the RBFN, and an additional robust control term is introduced to compensate for the reconstruction error of the RBFN instead of the rich number of rules and additional updated parameters. Control law for stabilizing the system and adaptive laws for updating both of weights in the RBFN and a bounding constant are established so that the whole closed-loop system is stable in the sense of Lyapunov, and the stability proof of the whole control system is presented. Computer simulations as well as experimental results are presented to show the validity and effectiveness of the proposed system.

Robust Active Power Control of a Battery-Supported DSTATCOM to Enhance Wind Generation Power Flow

  • Mahdianpoor, Mohammad;Kiyoumarsi, Arash;Ataei, Mohammad;Hooshmand, Rahmat-Allah
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1357-1368
    • /
    • 2017
  • The lack of controllability over the wind causes fluctuations in the output power of the wind generators (WGs) located at the wind farms. Distribution Static Compensator (DSTATCOM) equipped with Battery Energy Storage System (BESS) can significantly smooth these fluctuations by injecting or absorbing appropriate amount of active power, thus, controlling the power flow of WGs. But because of the component aging and thermal drift, its harmonic filter parameters vary, resulting in performance degradation. In this paper, Quantitative Feedback Theory (QFT) is used as a robust control scheme in order to deactivate the effects of filter parameters variations on the wind power generation power smoothing performance. The proposed robust control strategy of the DSTATCOM is successfully applied to a microgrid, including WGs. The simulation results obviously show that the proposed control technique can effectively smooth the fluctuations in the wind turbines' (WT) output power caused by wind speed variations; taking into account the filter parameters variations (structural parameter uncertainties).

차량 내구성 테스트를 위한 무인 주행 시스템의 구현 (Imlpememtation of the Autonomous Guided Vehicle Driving System for Durability Test)

  • 정종원;윤영진;이영진;이만형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.608-613
    • /
    • 2002
  • In this paper we developed the MPC sensor for steering control and steering control of the AGVDS(Autonomous Guided Vehicle Driving System) for Durability test. Among durability tests, the accelerated durability test has been widely used to evaluate the durability of vehicle structure and chassis parts in a short period of time on the designed road that has severe surface conditions. However it increased the drivers fatigue mainly caused by the severe driving conditions. The driver's difficulty to maintain the constant speed and control the steering wheel reduces the reliability of test results. In addition to the general detecting sensor for steering control was restricted by surrounding condition. So we need to develop steering control sensor was robust in the bad driving condition. In this paper we developed steering control sensor using magnetic induction which is robust in the bad driving condition and implemented the AGVDS.

  • PDF

마이크로컨트롤러를 이용한 유도전동기의 퍼지속도제어기 설계 (A Design of Fuzzy Speed Controller for Induction Motor using Microcontroller)

  • 안정훈;양형렬;위석오;임영철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.1999-2001
    • /
    • 1998
  • A speed controller of a induction motor using Microcontroller and Fuzzy logic is presented in the paper. Generally, fuzzy logic controller is known as a controller which can be coped with a non-linear and a complex system. A fuzzy logic is used for robust and fast speed control and space vector modulation method is used for PWM wave generation in this proposed system. The results of experiment show excellence of the proposed system and that the proposed system is appropriate to control the speed of a induction motor for industrial application.

  • PDF

마이크로컨트롤러를 이용한 유도전동기의 퍼지속도제어기 설계 (A Design of Fuzzy Speed Controller for Induction Motor using Microcontroller)

  • 임영철;나석환;안정훈
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1998년도 학술발표회논문집
    • /
    • pp.181-185
    • /
    • 1998
  • A speed controller of a induction motor using Microcontroller and Fuzzy logic is presented in the paper. Generally, fuzzy logic controller is known as a controller which can be coped with a non-linear and a complex system. A fuzzy logic is used for robust and fast speed control and space vector modulation method is used for PWM wave generation in this proposed system. The results of experiment show excellence of the proposed system and that the proposed system is appropriate to control the speed of a induction motor for industrial application.

  • PDF

퍼지논리를 이용한 유도전동기의 속도제어기 설계 (A Design of Speed Controller for Induction Motor using Fuzzy Logic)

  • 임영철;나석환;위석호;양형렬;안정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.244-249
    • /
    • 1998
  • Abstract-A speed controller of a induction motor using Microcontroller and Fuzzy logic is presented in the paper. Generally fuzzy logic controller is known as a controller which 춤 be coped with a non-linear and a complex system. A fuzzy logic is used for robust and fast speed control and space vector modulation method is used for PWM wave generation in this proposed system. The results of experiment show excellence of the proposed system and that the proposed system is appropriate to control the speed of a induction motor for industrial application

  • PDF

외란 관측자를 이용한 BLDC 모터의 강인 제어 (Robust Control of Brushless DC Motor Using Disturbance Observer)

  • 유병삼;신두진;김광영;허욱열;김진환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.909-911
    • /
    • 1999
  • This paper proposes a robust control system with the disturbance observer for BLDC servo system. The overall control system is composed of the speed controller which is implemented with PI controller and the disturbance observer with free parameters. The BLDC servo system can improve the closed loop characteristics without affecting the command input response. The characteristics of the closed loop system is improved by suppressing disturbance effectively with the disturbance observer. Measurement noise is also considered by adjusting bandwidth of free parameters. We can overcome the drawbacks of the conventional PI controller. Finally, the performance of the controller is analyzed theoretically and some simulation results are presented to demonstrate the better performance than the conventional PI controllers.

  • PDF

PID-자기동조 제어방식에 의한 DC 서보 전동기의 속도제어 (The Speed Control of a DC Servo Motor by the PID Self Tuning Control Method)

  • 조현섭;구기준
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1560-1564
    • /
    • 2008
  • 산업 자동화의 고정밀도에 따라 직류 전동기는 강인제어가 요구되고 있다. 하지만 PID 제어기를 갖는 전동기 제어 시스템이 부하 외란의 영향을 받게되면 제어 시스템의 강인제어는 어렵게 된다. 이에 대한 보완적인 한 방법으로 본 논문에서는 전동기 제어시스템을 위한 PID-자기동조 제어기법을 제시하였다. 만약 오차가 구속영역 내에 있고, 시스템이 안정한 상태에 있다면 자기동조는 사용되지 않고 PID 제어기만 동작한다. 자기동조 제어기는 오차가 구속 경계에 도달하게 되면 오차를 구속 영역내로 들어가도록 제어를 시작한다. PID-자기동조 제어 시스템의 오차가 시스템 설계자의 허용한도 내에서 유지되고 전체적으로 안정함을 증명하였다.