• Title/Summary/Keyword: Robust Speed Control System

Search Result 388, Processing Time 0.026 seconds

Design of Sliding-mode Observer for Robust Speed Sensorless Induction Motor Drive

  • Son, Young-Dae;Lee, Jong-Nyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.488-492
    • /
    • 2004
  • In this paper, the design of a speed sensorless vector control system for induction motor is performed by using a new sliding mode technique based on current model flux observer. A current and flux observer based on the current estimation error is constructed. The proposed current observer includes a sliding mode function, which is derivative of the flux. That is, sliding mode observer which allows the estimation of both the rotor speed and flux based on the measurement of motor terminal quantities, would be proposed. And, a synergetic speed controller using the estimated speed signal is designed to stabilize the speed loop. Simulation results are presented to confirm the theoretical analysis, and to show the system performance with different observer gains and the influence of the motor parameter.

  • PDF

A Study on Position Control of an Electro-Hydraulic Servo System Using High Speed On-Off Valves (고속전자밸브를 사용한 전기유압서보시스템의 위치제어에 관한 연구)

  • 허준영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.369-378
    • /
    • 1999
  • This paper presents position control of an electro-hydraulic servo system whoch is operated by four 2-2way high speed on-off valves with either PWM PID control method or sliding mode control method, The advantages of using high speed on-off valves instead of electo-hydraulic servo valves or electro-hydraulic proportional valves are low price robustness for oil contamination and direct control without a D/A converter. The system consists of load cylinder inertia car potentiometer and external load cylinder. The experiments were carried out under several conditions and the results were compared. As a result the sliding mode method has shown good control performance and the robust and stable positioning of the elector-hydraulic servo system can be achieved accurately.

  • PDF

Robust Fuzzy Controller for Mitigating the Fluctuation of Wind Power Generator in Wind Farm (풍력발전단지의 출력변동저감을 위한 강인 퍼지 제어기 설계)

  • Sung, Hwa Chang;Tak, Myung Hwan;Joo, Young Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • This paper proposes the implementation of robust fuzzy controller for designing intelligent wind farm and mitiagating the fluctuation of wind power generator. The existing researches are limited to individual wind turbine with variable speed so that it is necessary to study the multi-agent wind turbine power system. The scopes of these studies include from the arrangements of each power turbine to the control algorithms for the wind farm. For solving these problems, we introduce the composition of intelligent wind farm and use the T-S (Takagi-Sugeno) fuzzy model which is suitable for designing fuzzy controller. The control object in wind farm enables the minimizing the fluctuation of wind power generator. Simulation results for wind fram which is modelled as mathematically are demonstrated to visualize the feasibility of the proposed method.

Design of Speed Controller for an Induction Motor with Inertia Variation

  • Sin E. C.;Kong B. G.;Kim J. S.;Yoo J. Y.;Park T. S.;Lee J. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.374-379
    • /
    • 2001
  • In this paper, a novel design algorithm of speed controller for an Induction motor with the inertia variation is proposed. The main contribution of our work is a very robust, reliable and stable procedure for setting of the PI gains against the specified range of the inertia variation of an induction motor using Kharitonovs robust control theory. Therefore, the basic segment of controller design, the variation of induction motor inertia is estimated by the RLS (Recursive least square) method. PI based speed controller is widely used in industrial application for its simple structure and reliable performance. In addition the Kharitonov robust control theory is used for verification stability of closed-loop transfer function. The performance of this proposed design method is proved by digital simulation and experimentation with high performance DSP based induction motor driving system.

  • PDF

A Study on the Speed Control of Medium Diesel Engine using a Fuzzy-PI Controller (퍼지 PI제어기를 이용한 중속 디젤 기관의 속도제어에 관한 연구)

  • 김영일;천행춘;서인호;유영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.435-440
    • /
    • 2000
  • The speed control system of diesel engine is considerably nonlinear. Therefore, a countermeasure such as gain scheduling used to be incorporated to compensate this nonlinearity. On the other hand, it is said that fuzzy control is very robust against nonlinearity. But it is difficult to get a satisfactory response with only fuzzy control in real system. In this paper authors design a fuzzy-PI controller for the speed control of Medium diesel engine and carry out experiments with dedicate system implemented by Intel 80916KC to real diesel engine, Deawoo MAN 6Cyl., 1800rpm driving 3$\psi$220V, 150KW generator. We confirm the effectiveness of proposed control system.

  • PDF

A Speed Control of Stepping Motor Using a Self-Tuning Regulator

  • Kim, Young-Tae;Kim, Sei-Yoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.69-75
    • /
    • 2009
  • In this paper, a self-tuning regulator for a speed control of a permanent magnet type stepping motor is proposed. The self-tuning theory provides a nonlinear modeling of a stepping motor drive system and can provide the controller with information regarding the reference variation and parameter variation of the stepping motor through the on-line estimation. The proposed self-tuning regulator organize the positive feedback loop and IP(Integral-Proportional) type. Therefore, the proposed self-tuning regulator has a robust control capabilities during dynamic operation. The availability of the proposed controller is verified through experimental results.

Low-Cost Position Sensorless Switched Relutance Motor Drive Using a Single-Controllable Switch Converter

  • Yang, Hyong-Yeol;Kim, Jae-Hyuck;Krishnan, R.
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • Elimination of rotor position sensors mechanically coupled with the rotor shaft is attractive to variable speed drives primarily due to increased system reliability and cost reduction. In this regard, search for a simple and robust position sensorless control has been intensified in past few years specifically for low-cost, high-volume applications such as home appliances. This paper describes a new parameter insensitive position sensorless control for switched reluctance motor (SRM) drives satisfying such a need in this market segment. Two consecutive switch-on times of the controllable switch in hysteresis current control are compared to estimate the rotor position and speed. The proposed sensorless control algorithm is very simple to implement since it does not depend on extensive computation or any additional hardware. In addition, the proposed method is robust in that its dynamic performance is least affected by system parameter variations. The proposed approach is demonstrated on a single-controllable-switch-converter-driven SRM with two-phases that lends itself to a system with low cost and compact packaging which comes close to the intended applications. Analysis and simulation results followed by experimental verification are presented to demonstrate the feasibility of the proposed sensorless control method.

Measurement of Velocity Disturbance for Robust Seek Control (강인 검색 제어를 위한 속도 외란 측정)

  • 이문노;신진호;김성우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.860-867
    • /
    • 2003
  • This paper presents a systematic method measuring a velocity disturbance to design the robust seek loop system of optical disk drives. The velocity disturbance caused by the rotation of a disk has a greater influence on the performance of the seek control loop as the rotational speed increases. Thus, it needs to measure the extent of the velocity disturbance and design the seek control loop based on the measured data. The measurement method of the velocity disturbance is a real-time . method using a measurable velocity and a velocity controller output and is a robust method considering actuator uncertainties. The loop gain adjustment algorithm is introduced to compensate for the actuator uncertainties. The proposed method is implemented by an experimental digital system and is evaluated through an experiment.

Improvement in Control Performance of a Servo System Compensating Bandwidth Variations at Low Speed

  • Ji, Young-Eun;Park, Je-Wook;Hwang, Seon-Hwan;Baek, Kwang-Ryul;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.382-387
    • /
    • 2010
  • This paper presents a novel design method for determining the PID gains of a speed controller for a servo system compensating variations in bandwidth at a low speed. The variations in bandwidth of a speed controller are measured at a low speed and the relationship between the bandwidth and the damping ratio are verified by determining the location of the closed loop pole. The proposed algorithm uses the z-transform of a plant and speed controller and applies the time-varying sampling method for determining the PID gains of the speed controller at low speed. The magnitude and the phase condition are considered for finding a suitable control gain. The usefulness and effectiveness of the proposed method is demonstrated through experimental results such as low speed control and robust disturbance responses.

The Position and Speed Control of the BLDC Motor Using the Disturbance Observer (외란 관측기를 이용한 BLDCM의 위치 및 속도제어)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.899-906
    • /
    • 2020
  • Motor control requires robust and precise control performance even in the presence of errors in the mathematical model of the motor and disturbances acting on the motor. For robust and precise control, a disturbance observer was designed to estimate the load fluctuation and applied to a back-stepping controller designed as a nominal system. The control performance of the designed system was verified by applying it to the 120 [W] Brushless Direct Current Motor. As a result of the position control and speed control, the disturbance is overcome from the steady state error converges to zero, and asymptotically stable results can be confirmed.