DOI QR코드

DOI QR Code

The Position and Speed Control of the BLDC Motor Using the Disturbance Observer

외란 관측기를 이용한 BLDCM의 위치 및 속도제어

  • Jeon, Yong-Ho (Dept. aviation maintenance engineering, JungWon University)
  • Received : 2020.08.24
  • Accepted : 2020.10.15
  • Published : 2020.10.31

Abstract

Motor control requires robust and precise control performance even in the presence of errors in the mathematical model of the motor and disturbances acting on the motor. For robust and precise control, a disturbance observer was designed to estimate the load fluctuation and applied to a back-stepping controller designed as a nominal system. The control performance of the designed system was verified by applying it to the 120 [W] Brushless Direct Current Motor. As a result of the position control and speed control, the disturbance is overcome from the steady state error converges to zero, and asymptotically stable results can be confirmed.

전동기의 제어에 있어서 전동기의 수학적 모델 오차와 작용하는 외란에 대해서 강건하며 정밀한 제어의 성능을 요구한다. 강건하며 정밀한 제어를 위하여 외란 관측기를 설계하여 부하변동을 추정하고, 공칭 시스템으로 설계된 백스텝핑 제어기에 적용하였다. 설계된 시스템의 제어 성능을 확인하고자 120 [W]급의 BLDCM(Brushless Direct Current Motor)에 적용하여, 위치제어 및 속도제어의 결과 외란을 극복하고 정상상태 오차가 영으로 수렴하며, 점근적 안정한 결과를 확인할 수 있다.

Keywords

References

  1. K. Ohnishi, "A new servo method in mechatronics," Trans. of Japanese Society of Electrical Engineers, vol. 107-D, 1987, pp. 83-86.
  2. J. Back and H. Shim, "Adding robustness to nominal output feedback controllers for uncertain nonlinear systems: A nonlinear version of disturbance observer," Automatica, vol. 44, no. 10, 2008, pp. 2528-2537. https://doi.org/10.1016/j.automatica.2008.02.024
  3. J. Back and H, Shim, "An inner-loop controller guaranteeing robust transient performance for uncertain MIMO nonlinear systems," IEEE Trans. on Automatic Control, vol. 54, no. 7, 2009, pp. 1601-1607. https://doi.org/10.1109/TAC.2009.2017962
  4. J. Kim, "A robust sensorless speed control of sensorless BLDC motor," J. of the Korea Institute of Electronic Communication Sciences, vol. 3, no. 4, 2008, pp. 266-275.
  5. H. Lee, W. Cho, and K. Lee, "Improved switching method for sensorless BLDC motor drive," J. of the Korea Institute of Electronic Communication Sciences, vol. 5, no. 2, 2010, pp. 164-170.
  6. Y-H. Jeon and M-H. Cho, "A Speed Control of BLDC Motor using Adaptive Back stepping Technique," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 8, 2014, pp. 899-905. https://doi.org/10.13067/JKIECS.2014.9.8.899
  7. J. Zhou and Y. Wang, "Adaptive backstepping speed controller design for a permanent magnet synchronous motor," Electric Power Applications IEE Proc. vol. 149, no. 2, 2002, pp. 165-172. https://doi.org/10.1049/ip-epa:20020187
  8. M. Ouassaid, M. Cherkaoui, and Y. Zidani, "A Nonlinear Speed Control for a PM Synchronous Motor Using an Adaptive Back -stepping Control Approach," IEEE Int. Conf. on Industrial Technology (ICIT), Hammamet, Tunisia, vol. 3, 2004, pp. 1287-1292.
  9. S. Rebouh, A. Kaddouri, R. Abdessemed, and A. Haddoun, "Adaptive Back stepping speed Control for a Permanent Magnet Synchronous Motor," Management and Service Science (MASS) 2011 Int. Conf., Wuhan, China, 2011, pp. 1-4.
  10. L. Yuan, H. Feng-you, and W. Feng "Nominal Model-Based Control for Permanent Magnet Synchronous Motor," 2009 Int. Conf. on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, vol. 2, 2009, pp. 343-346.
  11. S. Back, "A Study on the Design and Implementation of 2-phase BLDC Fan Motor with 1-horsepower Class for Air Conditioning," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 4, Aug. 2018, pp. 760.
  12. H. Kwon, "Knee Rehabilitation System through EMG Signal analysis and BLDC Motor Control," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no.5, Oct. 2019, pp. 1009-1018.