• Title/Summary/Keyword: Robust Optimization

Search Result 709, Processing Time 0.024 seconds

A Comparative Study on Optimization Procedures to Robust Design (로버스트설계에서 최적화방안에 대한 비교 연구)

  • Kwon, Yong-Man;Mun, In-Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.1
    • /
    • pp.65-72
    • /
    • 2000
  • Robust design is an approach to reducing performance variation of quality characteristic values in quality engineering. Taguchi parameter design has a great deal of advantages but it also has some disadvantages. The various research efforts aimed at developing alternative methods. In the Taguchi parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was suggested by Welch et. al. (1990) and studied by others. In this paper we make a comparative study on optimization procedures to robust design in the two different experimental design(product array, combined array) approaches the Mough the Monte Carlo simulation.

  • PDF

Robust Design of Pantograph Panhead Sections Considering Aerodynamic Stability and Noise (유동안정성 및 유동소음을 고려한 팬터그래프 팬헤드 단면의 강건설계)

  • 조운기;이종수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.83-91
    • /
    • 2003
  • Pantograph design Process must be considered in terms of stability of aerodynamics and reduction of aeroacoustics. Furthermore pantograph needs to be insensible to severe circumstance condition like typhoon, tunnel, a change of season. In this paper, robust design of panhead sections is conducted based on the Taguchi's design of experiment method. In the aeroacoustic noise analysis, an acoustic analogy using the Ffowcs Williams and Hawkings(FW-H) equation is used to calculate the flow induced sound pressure level in aeroacoustics. From the near-field CFD analysis data, the far-field noise is predicted at the positions of 25 m away from Pantograph. Based on aerodynamic(CFD) and aeroacoustic(FW-H) analysis data, the optimal sizing and Positioning of panhead elements are determined using robust design optimization method. Design parameters such as thickness, length and radius are controllable factors, while outdoor air temperature and atmospheric pressure are considered as uncontrollable factors in the context of Taguchi's approach. A number of CFD simulation and aeroacoustic analysis are performed based on orthogonal arrays. In this paper, two-step optimization method is used as a parameter design procedure. It is executed using signal to noise(S/N) ratio and analysis of means(ANOM) method. So Thus, an optimal level of design parameters Is extracted to minimize the disconnection ration between contact strips and catenary system, and reduce the far-field aeroacoustic noise.

Design of Robust Support Vector Machine Using Genetic Algorithm (유전자 알고리즘을 이용한 강인한 Support vector machine 설계)

  • Lee, Hee-Sung;Hong, Sung-Jun;Lee, Byung-Yun;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.375-379
    • /
    • 2010
  • The support vector machine (SVM) has been widely used in variety pattern recognition problems applicable to recommendation systems due to its strong theoretical foundation and excellent empirical successes. However, SVM is sensitive to the presence of outliers since outlier points can have the largest margin loss and play a critical role in determining the decision hyperplane. For robust SVM, we limit the maximum value of margin loss which includes the non-convex optimization problem. Therefore, we proposed the design method of robust SVM using genetic algorithm (GA) which can solve the non-convex optimization problem. To demonstrate the performance of the proposed method, we perform experiments on various databases selected in UCI repository.

A Robust Pricing/Lot-sizing Model and A Solution Method Based on Geometric Programming

  • Lim, Sung-Mook
    • Management Science and Financial Engineering
    • /
    • v.14 no.2
    • /
    • pp.13-23
    • /
    • 2008
  • The pricing/lot-sizing problem of determining the robust optimal order quantity and selling price is discussed. The uncertainty of parameters characterized by an ellipsoid is explicitly incorporated into the problem. An approximation scheme is proposed to transform the problem into a geometric program, which can be efficiently and reliably solved using interior-point methods.

Robust Pole Placement for Structured Uncertain Systems (구조화된 불확실성이 있는 시스템의 강인한 극배치 제어)

  • 이준화
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.11-15
    • /
    • 1999
  • In this paper, a robust pole placement controller for time invariant linear systems with polytopic uncertainties is presented. The proposed controller is a fixed order output feedback controller which stabilizes the uncertain systems and satisfies the constraints on the closed-loop pole location. The proposed controller can be obtained by minimizing a certain nonlinear object function subject to linear matrix inequality constraints. An algorithm for solving the nonlinear optimization problem is also proposed.

  • PDF

Robust control of linear systems under structured nonlinear time-varying perturbations I - Analysis

  • Bambang, Riyanto-T.;Shimemura, Etsujiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.81-87
    • /
    • 1993
  • In this paper robust stability conditions are obtained for linear dynamical systems under structured nonlinear time-varying perturbations, using absolute stability theory and the concept of dissipative systems. The conditions are expressed in terms of solutions to linear matrix inequality(LMI). Based on this result, a synthesis methodology is developed for robust feedback controllers with worst-case H$_{2}$ perforrmance via convex optimization and LMI formulation.

  • PDF

Autopilot Design with Two Degree of Freedom $H_{\infty}$ Control Method (2자유도 $H_{\infty}$제어기를 이용한 비행체 자동조종장치 설계)

  • 최광진;황준하;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1304-1307
    • /
    • 1996
  • In this paper, we present a robust Two Degree of Freedom (TDF) $H_{\infty}$ controllers for a missile system. The feedback controller is designed to meet robust stability and disturbance rejection specifications while the prefilter is used to improve the robust model matching properties of the closed loop system. As the perturbed model, we use the normalized coprim factor perturbations. These controllers are designed using $H_{\infty}$ optimization procedures, and applied to a missile model via simulation.

  • PDF

Sliding Mode Control for Robot Manipulator Usin Evolution Strategy (Evolution Strategy를 이용한 로봇 매니퓰레이터의 슬라이딩 모드 제어)

  • 김현식;박진현;최영규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.379-382
    • /
    • 1996
  • Evolution Strategy is used as an effective search algorithm in optimization problems and Sliding Mode Control is well known as a robust control algorithm. In this paper, we propose a Sliding Mode Control Method for robot manipulator using Evolution Strategy. Evolution Strategy is used to estimate Sliding Mode Control Parameters such as sliding surface gradient, continuous function boundary layer, unknown plant parameters and switching gain. Experimental results show the proposed control scheme has accurate and robust performances with effective search ability.

  • PDF

An Alternative Approach to the Robust Inventory Control Problem

  • Park, Kyungchul
    • Management Science and Financial Engineering
    • /
    • v.20 no.2
    • /
    • pp.1-5
    • /
    • 2014
  • The robust inventory control problem was proposed and solved by Bertsimas and Thiele (2006). Their results are very interesting in that the problem can be solved easily and also the solution possesses nice properties of those found in the traditional stochastic inventory control problem. However, their formulation is shown to be incorrect, which invalidates all of the results given there. In this paper, we propose an alternative formulation of the problem which uses a different but practically applicable uncertainty set. Under the newly proposed model, all of the useful properties given in Bertsimas and Thiele (2006) will be shown to be valid.

Robust Stabilization of Large-Scale Discrete-Time Systems with Time-Delays (시간지연을 갖는 이산시간 대규모 시스템의 강인 안정화)

  • Park, Ju-H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2293-2295
    • /
    • 2000
  • This paper describes the synthesis of robust decentralized controllers for uncertain large-scale discrete-time systems with time-delays in subsystem interconnections. Based on the Lyapunov method, a sufficient condition for robust stability, is derived in terms of a linear matrix inequality(LMI). The solutions of the LMI can be easily obtained using various efficient convex optimization techniques. A numerical example is given to illustrate the proposed method.

  • PDF