• 제목/요약/키워드: Robust Observer

검색결과 442건 처리시간 0.032초

VSS 관측기를 이용한 서보계의 설계 (Design of servo system based on VSS Observer)

  • 심귀보;김성현;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.442-445
    • /
    • 1991
  • In the physical system, if we can precisely control an acceleration and force, we can improve the performance of their integral values, velocity and position. From this point of view, in this paper we try to use an obverser which is constructed by using Variable Structure System for estimating the acceleration in the system with the bounded unknown disturbance and the parameter mismatching. To obtain the robust control performance, the VSS with sliding mode is adopted in the design of the servo controller.

  • PDF

Diagnosis of Linear Systems with Structured Uncertainties based on Guaranteed State Observation

  • Planchon, Philippe;Lunze, Jan
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권3호
    • /
    • pp.306-319
    • /
    • 2008
  • Reaching fault tolerance in technological systems requires to detect malfunctions. This paper presents a diagnostic method that is robust with respect to unknown-but-bounded uncertainties of the dynamical model and the measurements. By using models of the faultless and the faulty behaviours, a state-set observer computes polyhedral sets from which the consistency of the models with the interval measurements is determined. The diagnostic result is proven to be complete, i.e., the set of faults obtained by the diagnostic algorithm includes the actual fault. The algorithm is illustrated by an application example.

전동기 운전을 위한 외란상쇄 관측기 설계 (Design of Disturbance Cancellation for Motor Driving)

  • 김용주;서영수
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.150-153
    • /
    • 2002
  • This paper designed a robust control of an induction motor using a disturbance cancellation observer of a feedforward control. The speed response of conventional Pl controller characteristic is affected by variations of load torque disturbance. In the proposed system the speed control characteristic using a feedforward control isn't affected by a load torque disturbance.

  • PDF

외란 관측기를 이용한 동적 시스템의 성능 개선 (Performance Enhancement of Dynamic Systems by Disturbance Observers)

  • 오경환;정정주;백문철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.241-244
    • /
    • 2002
  • Using disturbance observers is effective in enhancing the performance of systems in presence of disturbances. In this paper, we present a novel design of disturbance observers to achieve enhanced robust performance. In addition, we propose a new method of reducing the effect of measurement noise via modification of plant modeling in disturbance observer.

  • PDF

파라메타 변동에 강인한 유도전동기의 속도센서리스 벡터제어 (Robust Speed Sensorless Vector Control of Induction Motor for Parameter Variations)

  • 김상욱;김승범;김진수;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 F
    • /
    • pp.2113-2116
    • /
    • 1997
  • The speed sensorless vector control of induction motor using the rotor speed and flux estimation is widely used. In practice, these schemes depend on the accurate parameters of the machine. If in the vector control scheme an inaccurate parameter of induction motor due to skin effects and to temperature variations is used. it is difficult to achieve correct field orientation. From this reason. we propose robust speed sensorless vector control of induction motor against the variations of parameter and disturbance by using extended Kalman filter. For speed and rotor flux estimation. conventional adaptive flux observer is applied. extended Kalman filter which is correctly capable of estimating rotor flux and load by eliminating virtually influences of structural noises is proposed. Simulation results show the effectiveness of the control strategy proposed here for the induction motor drives.

  • PDF

가속 토오크 궤환을 이용한 영구자석 동기전동기의 강인제어 (A Robust Control of PM Synchronous Motor Using Accelerating Torque Feedback)

  • 정세교;김창균;박희정;윤명중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.571-573
    • /
    • 1996
  • A robust control technique of the PM synchronous motor is presented using an accelerating torque feedback. The accelerating torque is estimated by using an adaptive torque observer and then this estimated torque is controlled by a VSC technique. By employing the proposed torque control, the speed control performance of the motor is improved and the load independency can be realized. The simulations carried out for the PM synchronous motor to verily the effectiveness of the proposed control.

  • PDF

매개변수 불확실성이 있는 시스템의 출력미분치 추정 (Estimation of Output Derivative of The System with Parameters Uncertainty)

  • 김유승;양호석;이건복
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.543-550
    • /
    • 2002
  • This work is concerned with the estimation of output derivatives and their use for the design of robust controller for linear systems with systems uncertainties due to modeling errors and disturbance. It is assumed that a nominal transfer function model and Quantitative bounds for system uncertainties are known. The developed control schemes are shown to achieve regulation of the system output and ensures boundedness of the system states without imposing any structural conditions on system uncertainties and disturbances. Output derivative estimation is first conducted trough restructuring of the plant in a specific parameterization. They are utilized for constructing robust nonlinear high-gain feedback controller of a SMC(Sliding Mode Controller) Type. The performances of the developed controller are evaluated and shown to be effective and useful through simulation study.

  • PDF

이중 학습에 의한 선형동기모터의 위치제어 (Position Control of Linear Synchronous Motor by Dual Learning)

  • 박정일;서성호;울루구벡
    • 한국정밀공학회지
    • /
    • 제29권1호
    • /
    • pp.79-86
    • /
    • 2012
  • This paper proposes PID and RIC (Robust Internal-loop Compensator) based motion controller using dual learning algorithm for position control of linear synchronous motor respectively. Its gains are auto-tuned by using two learning algorithms, reinforcement learning and neural network. The feedback controller gains are tuned by reinforcement learning, and then the feedforward controller gains are tuned by neural network. Experiments prove the validity of dual learning algorithm. The RIC controller has better performance than does the PID-feedforward controller in reducing tracking error and disturbance rejection. Neural network shows its ability to decrease tracking error and to reject disturbance in the stop range of the target position and home.

오피스용 3 차원 실물 복제기를 위한 타이밍 벨트 시스템의 고속.고 정밀 제어 (High Speed and Accuracy Control of Timing Belt System for SFFS of Office)

  • 이현정;김정수;이민철;김동수;이원희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.339-342
    • /
    • 2004
  • The x-y table of the SFFS to move a printer head must be the system that has a high speed and accuracy. So we propose the SMCSPO algorithm on the timing belt system. The major contribution is the design of a robust observer for the state and the perturbation of the timing belt system, which is combined with a robust controller. The control performance of the proposed algorithm is compared with PD control by the experiments. The results of SMCSPO algorithm showed more accuracy and better performance than PD control. Therefore we may apply the algorithms to a high speed and accuracy control for SFFS.

  • PDF

Robust Control of Induction Motor with HTheory based on Loopshaping

  • Benderradji, Hadda;Chrifi-Alaoui, Larbi;Mahieddine-Mahmoud, Sofiane;Makouf, Abdessalam
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.226-232
    • /
    • 2011
  • The $H_{\infty}$ approach, adopted in this paper, is based on loop shaping using a normalized coprime factor combined with a field-oriented control to control induction motor. We develop two loops. The first one, the inner loop, controls the stator current by $H{\infty}$ controller in order to obtain good performance. The second loop, the outer one, guarantees stability and tracking performance of speed and rotor flux using a proportional integral controller. When the rotor flux cannot be measured, we introduce a flux observer to estimate the rotor flux. Simulation and experimental results are presented to validate the effectiveness and the good performance of this control technique.