• Title/Summary/Keyword: Robust Design and Optimization

Search Result 412, Processing Time 0.044 seconds

Probabilistic Structure Design of Automatic Salt Collector Using Reliability Based Robust Optimization (신뢰성 기반 강건 최적화를 이용한 자동채염기의 확률론적 구조설계)

  • Song, Chang Yong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.799-807
    • /
    • 2020
  • This paper deals with identification of probabilistic design using reliability based robust optimization in structure design of automatic salt collector. The thickness sizing variables of main structure member in the automatic salt collector were considered the random design variables including the uncertainty of corrosion that would be an inevitable hazardousness in the saltern work environment. The probabilistic constraint functions were selected from the strength performances of the automatic salt collector. The reliability based robust optimum design problem was formulated such that the random design variables were determined by minimizing the weight of the automatic salt collector subject to the probabilistic strength performance constraints evaluating from reliability analysis. Mean value reliability method and adaptive importance sampling method were applied to the reliability evaluation in the reliability based robust optimization. The three sigma level quality was considered robustness in side constraints. The probabilistic optimum design results according to the reliability analysis methods were compared to deterministic optimum design results. The reliability based robust optimization using the mean value reliability method showed the most rational results for the probabilistic optimum structure design of the automatic salt collector.

Robust Optimization of Automotive Seat by Using Constraint Response Surface Model (제한조건 반응표면모델에 의한 자동차 시트의 강건최적설계)

  • 이태희;이광기;구자겸;이광순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.168-173
    • /
    • 2000
  • Design of experiments is utilized for exploring the design space and for building response surface models in order to facilitate the effective solution of multi-objective optimization problems. Response surface models provide an efficient means to rapidly model the trade-off among many conflicting goals. In robust design, it is important not only to achieve robust design objectives but also to maintain the robustness of design feasibility under the effects of variations, called uncertainties. However, the evaluation of feasibility robustness often needs a computationally intensive process. To reduce the computational burden associated with the probabilistic feasibility evaluation, the first-order Taylor series expansions are used to derive individual mean and variance of constraints. For robust design applications, these constraint response surface models are used efficiently and effectively to calculate variances of constraints due to uncertainties. Robust optimization of automotive seat is used to illustrate the approach.

  • PDF

A Study for Robustness of Objective Function and Constraints in Robust Design Optimization

  • Lee Tae-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1662-1669
    • /
    • 2006
  • Since randomness and uncertainties of design parameters are inherent, the robust design has gained an ever increasing importance in mechanical engineering. The robustness is assessed by the measure of performance variability around mean value, which is called as standard deviation. Hence, constraints in robust optimization problem can be approached as probability constraints in reliability based optimization. Then, the FOSM (first order second moment) method or the AFOSM (advanced first order second moment) method can be used to calculate the mean values and the standard deviations of functions describing constraints and object. Among two methods, AFOSM method has some advantage over FOSM method in evaluation of probability. Nevertheless, it is difficult to obtain the mean value and the standard deviation of objective function using AFOSM method, because it requires that the mean value of function is always positive. This paper presented a special technique to overcome this weakness of AFOSM method. The mean value and the standard deviation of objective function by the proposed method are reliable as shown in examples compared with results by FOSM method.

Network Congestion Control using Robust Optimization Design

  • Quang, Bui Dang;Shin, Sang-Mun;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11B
    • /
    • pp.961-967
    • /
    • 2008
  • Congestion control is one of major mechanisms to avoid dropped packets. Many researchers use optimization theories to find an efficient way to reduce congestion in networks, but they do not consider robustness that may lead to unstable network utilities. This paper proposes a new methodology in order to solve a congestion control problem for wired networks by using a robust design principle. In our particular numerical example, the proposed method provides robust solutions that guarantee high and stable network utilities.

Robust Optimization of Caliper Brake Disc Considering Tolerance (설계변수 및 매개변수의 공차를 고려한 캘리퍼 디스크 브레이크의 강건설계)

  • Kim, Jong-Hun;Park, Jeong-Min;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.905-913
    • /
    • 2003
  • Generally, most of optimization have been performed with fixed sizes and variables. But, the optimum value considering tolerance of design variables and material properties, might be useless owing to exist in infeasible region. It is needed that the tolerance of design variables and material properties is considered for a real design problem. A deterministic optimal solution can be in the feasible region by performing robust optimization considering tolerance. In the paper, robust design is suggested to gain an optimum insensitive to variation of design variables and it is applied for optimization problem of caliper disc brakes for vehicles.

Robust design using fuzzy system

  • Ahn, Taechon;Lee, Sangyoun;Ryu, Younbum;Oh, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.40-43
    • /
    • 1996
  • To design high quality products at low cost is one of very important task for engineers Design optimization for performances can be one solution in this task. This is robust design which has been proved effectively in many field of engineering design. In this paper, the concept of robust design is introduced and combined to fuzzy optimization and nonsingleton fuzzy logic system. The optimum parameter set points were obtained by the fuzzy optimization method and nonsingleton fuzzy logic system. These methods are applied to a filter circuit, a part of the audio circuit of mobile radio transceiver. The results are compared each other.

  • PDF

Multi-objective robust optimization method for the modified epoxy resin sheet molding compounds of the impeller

  • Qu, Xiaozhang;Liu, Guiping;Duan, Shuyong;Yang, Jichu
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.179-190
    • /
    • 2016
  • A kind of modified epoxy resin sheet molding compounds of the impeller has been designed. Through the test, the non-metal impeller has a better environmental aging performance, but must do the waterproof processing design. In order to improve the stability of the impeller vibration design, the influence of uncertainty factors is considered, and a multi-objective robust optimization method is proposed to reduce the weight of the impeller. Firstly, based on the fluid-structure interaction, the analysis model of the impeller vibration is constructed. Secondly, the optimal approximate model of the impeller is constructed by using the Latin hypercube and radial basis function, and the fitting and optimization accuracy of the approximate model is improved by increasing the sample points. Finally, the micro multi-objective genetic algorithm is applied to the robust optimization of approximate model, and the Monte Carlo simulation and Sobol sampling techniques are used for reliability analysis. By comparing the results of the deterministic, different sigma levels and different materials, the multi-objective optimization of the SMC molding impeller can meet the requirements of engineering stability and lightweight. And the effectiveness of the proposed multi-objective robust optimization method is verified by the error analysis. After the SMC molding and the robust optimization of the impeller, the optimized rate reached 42.5%, which greatly improved the economic benefit, and greatly reduce the vibration of the ventilation system.

Robust Optimization of a Resonant-type Micro-probe Using Gradient Index Based Robust Optimal Design Method (구배 지수에 근거한 강건 최적 설계 기법을 이용한 공진형 미소탐침의 강건 최적화)

  • Han, Jeong-Sam;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1254-1261
    • /
    • 2003
  • In this paper we present a simple and efficient robust optimal design formulation and its application to a resonant-type micro probe. The basic idea is to use the Gradient Index (GI) to improve robustness of the objective and constraint functions. In the robust optimal design procedure, a deterministic optimization for performance of MEMS structures is followed by design sensitivity analysis with respect to uncertainties such as fabrication errors and change of operating conditions. During the process of deterministic optimization and sensitivity analysis, dominant performance and uncertain variables are identified to define GI. The GI is incorporated as a term of objective and constraint functions in the robust optimal design formulation to make both performance and robustness improved. While most previous approaches for robust optimal design require statistical information on design variations, the proposed GI based method needs no such information and therefore is cost-efficient and easily applicable to early design stages. For the micro probe example, robust optimums are obtained to satisfy the targets for the measurement sensitivity and they are compared in terms of robustness and production yield with the deterministic optimums through the Monte Carlo simulation.

  • PDF

Robust Structural Optimization Using Gauss-type Quadrature Formula (가우스구적법을 이용한 구조물의 강건최적설계)

  • Lee, Sang-Hoon;Seo, Ki-Seog;Chen, Shikui;Chen, Wei
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.745-752
    • /
    • 2009
  • In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the tensor product quadrature (TPQ) formula and the univariate dimension reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty.

Multi-Level Response Surface Approximation for Large-Scale Robust Design Optimization Problems (다층분석법을 이용한 대규모 파라미터 설계 최적화)

  • Kim, Young-Jin
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.73-80
    • /
    • 2007
  • Robust Design(RD) is a cost-effective methodology to determine the optimal settings of control factors that make a product performance insensitive to the influence of noise factors. To better facilitate the robust design optimization, a dual response surface approach, which models both the process mean and standard deviation as separate response surfaces, has been successfully accepted by researchers and practitioners. However, the construction of response surface approximations has been limited to problems with only a few variables, mainly due to an excessive number of experimental runs necessary to fit sufficiently accurate models. In this regard, an innovative response surface approach has been proposed to investigate robust design optimization problems with larger number of variables. Response surfaces for process mean and standard deviation are partitioned and estimated based on the multi-level approximation method, which may reduce the number of experimental runs necessary for fitting response surface models to a great extent. The applicability and usefulness of proposed approach have been demonstrated through an illustrative example.