• 제목/요약/키워드: Robust Control of Vibration

검색결과 231건 처리시간 0.025초

파라미터 불확실성을 고려한 건물의 견실 진동 제어 (Robust Vibration Control for a Building with Parameter Uncertainty)

  • 최재원;김신종;이만형
    • 소음진동
    • /
    • 제10권4호
    • /
    • pp.575-583
    • /
    • 2000
  • In this paper, we design a vibration control system that includes a 3-D.O.F. mass-spring-damper structure for the analytical model of a building that is excited at the base of this structure by an external dynamic force, and one Active Mass Damper(AMD) on the top of this structure to generate control forces fro attenuation of the structural response. Two robust controllers based on $\mu$-synthesis and H$\infty$ optimal control are designed for the structural system to show that the performance of a control system can be degraded by some parameter uncertainties such as mass, stiffness coefficients, and/or damping coefficients. The performance of the two controllers are compared in terms of nominal performance, robust stability and robust performance by simulations.

  • PDF

진동량 추정을 통한 강인 트랙킹 제어기의 설계 (Design of a Robust Tracking Controller by the Estimation of Vibration Quantity)

  • 이문노;진경복;윤기봉
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.856-860
    • /
    • 2007
  • This paper presents a robust tracking controller design method for the track-following system of an optical recording device. A tracking loop gain adjustment algorithm is introduced to accurately estimate the tracking vibration quantity in spite of the uncertainties of the tracking actuator. A minimum tracking open-loop gain is calculated by the estimated tracking vibration quantity and a tolerable limit of tracking error. A robust tracking controller is designed by considering a robust $H_\infty$ control problem with the weighting function of a slightly larger gain than the minimum tracking open-loop gain. The proposed controller design method is applied to the track-following system of an optical recording device and is evaluated through the experimental result.

동흡진기를 이용한 유연 구조물의 강건제어 (Robust Control of Flexible Structure Using Dynamic Vibration Absorber)

  • 심상덕;강호식;정남희;장강석;김두훈;송오섭
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1093-1101
    • /
    • 2005
  • Hybrid mass damper systems have recently been introduced as a dynamic vibration absorber to exploit the benefits of both the conventional tuned mass damper system and the active control system. A hybrid system is programmed to function as either a conventional TMD or as an active system according to the wind conditions and the resultant building and damper mass vibration characteristics. This paper deals with the design of the robust controller for the control of the flexible box structure. The control algorithm was devised based on $H_2$(LQG) robust control logic with acceleration feedback and to improve the capability of the controller Kalman Filter was accepted for the system. To test the ability of the robust controller using the linear motor damper system, performance tests and simulations were carried out on the full-scale steel frame structure. Through the performance tests, it was confirmed that acceleration levels are reduced down.

Active vibration robust control for FGM beams with piezoelectric layers

  • Xu, Yalan;Li, Zhousu;Guo, Kongming
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.33-43
    • /
    • 2018
  • The dynamic output-feedback robust control method based on linear matrix inequality (LMI) method is presented for suppressing vibration response of a functionally graded material (FGM) beam with piezoelectric actuator/sensor layers in this paper. Based on the reduced model obtained by using direct mode truncation, the linear fractional state space representation of a piezoelectric FGM beam with material properties varying through the thickness is developed by considering both the inherent uncertainties in constitution material properties as well as material distribution and the model error due to mode truncation. The dynamic output-feedback robust H-infinity control law is implemented to suppress the vibration response of the piezoelectric FGM beam and the LMI method is utilized to convert control problem into convex optimization problem for efficient computation. In numerical studies, the flexural vibration control of a cantilever piezoelectric FGM beam is considered to investigate the accuracy and efficiency of the proposed control method. Compared with the efficient linear quadratic regulator (LQR) widely employed in literatures, the proposed robust control method requires less control voltage applied to the piezoelectric actuator in the case of same control performance for the controlled closed-loop system.

강인 포화 제어기의 LMI 최적 설계를 이용한 구조물의 능동 진동 제어 (Active Vibration Control of Structure Using LMI Optimization Design of Robust Saturation Controller)

  • 박영진;문석준;임채욱
    • 한국소음진동공학회논문집
    • /
    • 제16권3호
    • /
    • pp.298-306
    • /
    • 2006
  • In our previous paper, we developed a robust saturation controller for the linear time-invariant (LTI) system involving both actuator's saturation and structured real parameter uncertainties. This controller can only guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. But we cannot analytically make any comment on control performance of this controller. In this paper, we suggest a method to use linear matrix inequality (LMI) optimization problem which can analytically explain control performance of this robust saturation controller only in nominal system. The availability of design method using LMI optimization problem for this robust saturation controller is verified through a numerical example for the building with an active mass damper (AMD) system.

보이스코일 모터를 이용한 유연한 조작기의 H$_\infty$제어 (H$_\infty$ control of a flexible manipulator using voice coil motor)

  • 박형욱;박노철;박영필;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1700-1703
    • /
    • 1997
  • The flexibility of the manipulator inevitably inducess the vibration at the end effector. For the increase in speed and accuracy at the end tip, in this work, position and vibration control of a flexible manipuator with a separate voice coil type actrator for vibration suppression, is studied. The flexible manipulator with a tip mass is modeled an Euler-Bernoulli beam. An H.inf. controller is designed in order to make the controlled system robust against unmodeled higher-order mode vibration of the manipulator, output sensor noise, and etc. Simulations and experiments show that the modeling of the system is valid and that robust vibration control of the flexible manipulator is efficiently achieved.

  • PDF

유연한 XY 위치결정 시스템을 위한 강인 동작 제어기 설계 (Robust Motion Controller Design for Flexible XY Positioning Systems)

  • 김봉근;박상덕;정완균;염영일
    • 제어로봇시스템학회논문지
    • /
    • 제9권1호
    • /
    • pp.82-89
    • /
    • 2003
  • A robust motion control method is proposed fur the point-to-point position control of a XY positioning system which consists of a base cart, elastic ben and moving mass. The horizontal motion controller consists of the feedforward controller to suppress the single mode vibration of the elastic beam and the feedback controller to get the high-accuracy positioning performance of the base cart. Input preshaping vibration suppression method based on system modeling with analytic frequency equation is proposed and integrated into the robust internal-loop compensator(RIC) to increase the robustness of the whole closed-loop system The vertical motion controller is proposed based on the dual RIC structure. Through experiments, it is shown that the proposed method can stabilize the system and suppress the vibration in the presence of uncertainties and disturbances.

지능구조물의 다목적 상태궤환 제어 (Multiobjective State-Feedback Control of Smart Structural Systems)

  • 홍성일;박현철;박철휴
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.452-458
    • /
    • 2003
  • This paper presents a robust vibration control methodology of smart structural systems. The governing equations and associated boundary conditions are derived by Hamilton's principle. A robust controller is designed using a linear matrix inequality (LMI) approach to the multiobjective synthesis. The design objectives are to achieve a mix of H$\sub$$\infty$/ performance and H$_2$ performance satisfying constraints on the closed-loop pole locations in the face of model uncertainties. Numerical examples are presented to demonstrate the effectiveness of LMI approach in damping out the multiple modes of vibration of the piezo/beam system.

  • PDF

구조 진동을 고려한 평판 구조물 음향 투과 특성 연구 (Study on Sound Transmission through a Panel including Structural Vibration)

  • 장우석;김원철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.811-816
    • /
    • 2011
  • This study includes investigation on sound transmission phenomena through a structural panel including structural vibration and feedback control methodology to minimize the transmission. Focus is placed on finding the relation between vibration pattern and sound transmission, and on finding optimal sensor and actuator location. A simple analog feedback control circuit is designed and implemented to verify the approach.

  • PDF

압전/빔 시스템에 대한 강건제어기 개발 (Development of a Robust Controller for Piezo/beam Systems)

  • 홍성일;박현철;박철휴
    • 한국소음진동공학회논문집
    • /
    • 제14권7호
    • /
    • pp.612-618
    • /
    • 2004
  • This paper presents a robust vibration control methodology for smart structural systems. The governing equation and associated boundary conditions of the smart structural system are derived by using Hamilton's principle. The assumed mode method is used to discretize the governing equation into a set of ordinary differential equation. A robust controller is designed using a linear matrix inequality (LMI) approach for the multiobjective synthesis. The design objectives are to achieve a mix of H$_{\infty}$ performance and H$_2$ performance satisfying constraints on the closed-loop pole locations in the presence of model uncertainties. Numerical examples are presented to demonstrate the effectiveness of LMI approach in damping out the multiple vibration modes of the piezo/beam system.