• Title/Summary/Keyword: Robust Control Chart

Search Result 25, Processing Time 0.019 seconds

A Control Chart of the Deviation Based on the Gini′s Mean Difference (지니(Gini)의 평균차이를 이용한 산포관리도)

  • 남호수;강중철
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.67
    • /
    • pp.11-18
    • /
    • 2001
  • The efficiency and robustness of the scale estimator based on the Gini's mean difference are well known in Nam et al.(2000). In this paper we propose use of robust control limits based on the Gini's mean difference for the control of the process deviation. To compare the performances of the proposed control chart with the existing R-chart or S-chart, some Monte Carlo simulations are performed. The simulation results show that the use of the Gini's mean difference in construction of the control limits has good performance.

  • PDF

Robust CUSUM chart for Autocorrelated Process (자기상관을 갖는 공정의 로버스트 누적합관리도)

  • 이정형;전태윤;조신섭
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.4
    • /
    • pp.123-142
    • /
    • 1999
  • Conventional SPC assumes that observations are independent. Often in industrial practice, however, observations are not independent. A common approach to building control charts for autocorrelated data is to apply conventional SPC to the residuals from a time series model of the process or is to apply conventional SPC to the weighted or unweighted subgroup means. In this paper, we propose a robust CUSUM control scheme for the detection of level change, without model identification or subgrouping of autocorrelated data. The proposed CUSUM chart and other conventional control charts are compared by a Monte Carlo simulation. It is shown that the proposed CUSUM chart is more effective than conventional CUSUM chart when the process is autocorrelated.

  • PDF

Design of Robust $\bar{x}$ Control Chart Using a Location Parameter (위치모수를 이용한 로버스트 $\bar{x}$ 관리도의 설계)

  • Chung, Young-Bae;Kim, Yon-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.151-156
    • /
    • 2014
  • Control charts are generally used for process control, but the role of traditional control charts have been limited in case of a contaminated process. Traditional $\bar{x}$ control charts have not been activated well for such a problem because of trying to control processes as center line and control limits changed by the contaminated value. This paper is to propose robust $\bar{x}$ control charts which is considering a location parameter in order to respond to contaminated process. In this paper, we consider $\bar{x}_{\alpha}$, that is trimmed rate; typically ten percent rate is used. By comparing with p, ARL value, the responding results are decided. The comparison resultant results of proposed two control charts are shown and are well contrasted.

Control Charts Based on Self-critical Estimation Process

  • Won, Hyung-Gyoo
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.1
    • /
    • pp.100-115
    • /
    • 1997
  • Shewhart control chart is a basic technique to monitor the state of a process. We observe samples of size four or five and plot some statistic(e.g., mean or range) of each sample on the chart. When setting up the chart, we need to obtain u, pp.r and lower control limits. It is common practice that those limits are calculated from the preliminary 20-40 samples presumed to be homogeneous. However, it may ha, pp.n in practice that the samples are contaminated by outlying observations caused by various reasons. The presence of outlying observations make the control limits wider and hence decrease the sensitivity of the charts. In this paper, we introduce robust control charts with tighter control limits when outlying observations are present in the preliminary samples. Examples will be given via simulation study.

  • PDF

Robust determination of control parameters in K chart with respect to data structures (데이터 구조에 강건한 K 관리도의 관리 모수 결정)

  • Park, Ingkeun;Lee, Sungim
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1353-1366
    • /
    • 2015
  • These days Shewhart control chart for evaluating stability of the process is widely used in various field. But it must follow strict assumption of distribution. In real-life problems, this assumption is often violated when many quality characteristics follow non-normal distribution. Moreover, it is more serious in multivariate quality characteristics. To overcome this problem, many researchers have studied the non-parametric control charts. Recently, SVDD (Support Vector Data Description) control chart based on RBF (Radial Basis Function) Kernel, which is called K-chart, determines description of data region on in-control process and is used in various field. But it is important to select kernel parameter or etc. in order to apply the K-chart and they must be predetermined. For this, many researchers use grid search for optimizing parameters. But it has some problems such as selecting search range, calculating cost and time, etc. In this paper, we research the efficiency of selecting parameter regions as data structure vary via simulation study and propose a new method for determining parameters so that it can be easily used and discuss a robust choice of parameters for various data structures. In addition, we apply it on the real example and evaluate its performance.

Supplementary analyses of economic X over bar chart model

  • Jeon, Tae-Bo
    • Korean Management Science Review
    • /
    • v.12 no.1
    • /
    • pp.111-124
    • /
    • 1995
  • With the increasing interest of reducing process variation, statistical process control has served the pivotal tool in most industrial quality programs. In this study, system analyses have been performed associated with a cost incorporated version of a process control, a quadratic loss-based X over bar control chart model. Specifically, two issues, the capital/research investments for improvement of a system and the precision of a parameter estimation, have been addressed and discussed. Through the analysis of experimental results, we show that process variability is seen to be one of the most important sources of loss and quality improvement efforts should be directed to reduce this variability. We further derive the results that, even if the optimal designs may be sensitive, the model appears to be robust with regard to misspecification of parameters. The approach and discussion taken in this study provide a meaningful guide for proper process control. We conclude this study with providing general comments.

  • PDF

Effects of Non-normality on the Performance of Univariate and Multivariate CUSUM Control Charts (비정규 모집단에 대한 일변량 및 다변량 누적합 관리도의 성능 분석)

  • Chang, Young-Soon
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.4
    • /
    • pp.102-109
    • /
    • 2006
  • This paper investigates the effects of non-normality on the performance of univariate and multivariate cumulative sum(CUSUM) control charts for monitoring the process mean. In-control and out-of-control average run lengths of the charts are examined for the univariate/multivariate lognormal and t distributions. The effects of the reference value and the correlation coefficient under the non-normal distributions are also studied. Simulation results show that the CUSUM charts with small reference values are robust to non-normality but those with moderate or large reference values are sensitive to non-normal data especially to process data from skewed distributions. The performance of the chart to detect mean shift of a process is not invariant to the direction of the shift for skewed distributions.

Residual-based Robust CUSUM Control Charts for Autocorrelated Processes (자기상관 공정 적용을 위한 잔차 기반 강건 누적합 관리도)

  • Lee, Hyun-Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.3
    • /
    • pp.52-61
    • /
    • 2012
  • The design method for cumulative sum (CUSUM) control charts, which can be robust to autoregressive moving average (ARMA) modeling errors, has not been frequently proposed so far. This is because the CUSUM statistic involves a maximum function, which is intractable in mathematical derivations, and thus any modification on the statistic can not be favorably made. We propose residual-based robust CUSUM control charts for monitoring autocorrelated processes. In order to incorporate the effects of ARMA modeling errors into the design method, we modify parameters (reference value and decision interval) of CUSUM control charts using the approximate expected variance of residuals generated in model uncertainty, rather than directly modify the form of the CUSUM statistic. The expected variance of residuals is derived using a second-order Taylor approximation and the general form is represented using the order of ARMA models with the sample size for ARMA modeling. Based on the Monte carlo simulation, we demonstrate that the proposed method can be effectively used for statistical process control (SPC) charts, which are robust to ARMA modeling errors.

SUPPLEMENTARY ANALYSES OF ECONOMIC X CHART MODEL

  • Jeon,Tae Bo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.12 no.1
    • /
    • pp.111-111
    • /
    • 1987
  • With the increasing interest of reducing process variation, statistical process control has served the pivotal tool in most industrial quality programs. In this study, system analyses have been performed associated with a cost incorporated version of a process control, a quadratic loss-based X over bar control chart model. Specifically, two issues, the capital/research investments for improvement of a system and the precision of a parameter estimation, have been addressed and discussed. Through the analysis of experimental results, we show that process variability is seen to be one of the most important sources of loss and quality improvement efforts should be directed to reduce this variability. We further derive the results that, even if the optimal designs may be sensitive, the model appears to be robust with regard to misspecification of parameters. The approach and discussion taken in this study provide a meaningful guide for proper process control. We conclude this study with providing general comments.

Robust Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines Using Quantitative Feedback Theory (QFT 기법을 이용한 승용디젤엔진 공연비 제어 알고리즘 설계 연구)

  • Park, Inseok;Hong, Seungwoo;Shin, Jaewook;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.88-97
    • /
    • 2013
  • This paper presents a robust air-to-fuel ratio (AFR) control algorithm for managing exhaust gas recirculation (EGR) systems. In order to handle production tolerance, deterioration and parameter-varying characteristics of the EGR system, quantitative feedback theory (QFT) is applied for designing the robust AFR control algorithm. A plant model of EGR system is approximated by the first order transfer function plus time-delay (FOPTD) model. EGR valve position and AFR of exhaust gas are used as input/output variables of the plant model. Through engine experiments, parameter uncertainty of the plant model is identified in a fixed engine operating point. Requirement specifications of robust stability and reference tracking performance are defined and these are fulfilled by the following steps: during loop shaping process, a PID controller is designed by using a nominal loop transmission function represented on Nichols chart. Then, the frequency response of closed-loop transfer function is used for designing a prefilter. It is validated that the proposed QFT-based AFR control algorithm successfully satisfy the requirements through experiments of various engine operating points.