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Robust CUSUM chart for Autocorrelated Process

Jeong Hyeong Lee - Tae Yoon Jun
Division of Management Information Science, Dong-A University
Sinsup Cho
Dept. of Statistics, Seoul National University

Abstract

Conventional SPC assumes that observations are independent. Often in industrial
practice, however, observations are not independent. A common approach to
building control charts for autocorrelated data is to apply conventional SPC to the
residuals from a time series model of the process or is to apply conventional SPC
to the weighted or unweighted subgroup means. In this paper, we propose a
robust CUSUM control scheme for the detection of level change, without model
identification or subgrouping of autocorrelated data. The proposed CUSUM chart
and other conventional control charts are compared by a Monte Carlo simulation.
It is shown that the proposed CUSUM chart is more effective than conventional
CUSUM chart when the process is autocorrelated.

* This Paper was Supported by the Dong-A University Research Fund, in 1996
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1. Introduction

The cumulative sum(CUSUM) chart was first introduced by Page(1954). Other
important early contributions are Barnard(1959), Ewan and Kemp(1960) and
Johnson and Leone(1962). Ewan(1963) provided an excellent expository article on
the CUSUM and a small text elucidating CUSUM procedures was authored by
Van Dobben de Bruyn(1968).

Traditional statistical process control (SPC) assumes that consecutive
observations from a process are independent. Often in industrial practice, however,
observations are serially correlated. The effects of autocorrelation on various
monitoring schemes were studied by Goldsmith and Whitfield(1961) who showed
that negative autocorrelation can decrease false alarm rates for CUSUM charts.
Conversely, positive autocorrelation increases false alarm rates. Additional studies
were reported by Johnson and Bagshaw(1974), Bagshaw and Johnson(1975), and
Vasilopoulos and Stamboulis(1978). Johnson and Bagshaw(1974) obtained the limit
process for cumulative(or partial) sums of observations from ARMA processes and
explored the effect of ARMA noise on the CUSUM statistics proposed by Page
(1954). In a sequel, Bagshaw and Johnson(1975) examined the effect of ARMA
noise on the run length distribution for CUSUM’s. Alwan and Roberts(1983),
Alwan(1992), Montgomery and Mastrangelo(1991), Montgomery(1992), Hariss and
Ross(1991), Wardell et al(1994) and Yashchin(1993) described the effects of
autocorrelation on classical statistical process control. In the presence of positive
autocorrelation, classical SPC, without compensation, generates too many false
alarms.

Common approach to building control charts for autocorrelated data are to apply
classical SPC to the residuals from a time series model of the process and/or is
to apply classical SPC to the weighted or unweighted subgroup means. In practice,
the autocorrelated data are modeled by an ARMA model, see Box et al(1994),
Montgomery(1992), and Wardell et al(1994) among others. If the model is
appropriate and well estimated, its residual approximate white noise, and classical
methods can be applied.

One of the most interesting approaches to SPC for correlated processes using
ARMA modeling was proposed by Alwan and Roberts(1988). They introduced two
charts, which they referred to as the common cause control (CCC) chart and
special cause control (SCC) chart. The CCC chart is a plot of forecasted values
that are determined by fitting the correlated process with an ARMA model. This
chart assumes that no special causes have occurred. The SCC only include the
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systematic variation in the data.

On the other hand, Harris and Ross(1991) investigated the effect of
autocorrelation on the performance of a chart similar to the SCC chart that plots
the CUSUM of the residuals. They determined a simulated average run length
(ARL) for the CUSUM procedure when the process evolves according to an AR(1)
model for various values of the AR parameter, concluding that residual analysis is
insensitive to shifts in the mean when the process is positively autocorrelated.
Similarly, Nikiforov(1979) approximated the ARL’s for the CUSUM’s of the
residuals for general ARMAC( p, g) process and verified the approximation via
simulation. Yashchin’s(1993) objective is to evaluate the performance of CUSUM
charts applied to autocorrelated data. He considered charting the raw data directly
when the autocorrelation is low. When the autocorrelation is high, he considered a
transformation that essentially creates residuals of the type studied by Harris and
Ross(1991), but he allowed for autocorrelation in the residuals due to model
misspecification. He approximately accounted for moderate amounts of residual
autocorrelation by increasing the CUSUM parameter H, the decision interval of
the chart, to a level consistent with a desired ARL. He developed his adjustments
using the method suggested by Johnson and Bagshaw(1974) of approximating the
residuals by Brownian motion with drift.

Another approach can be found in Alwan and Radson(1992), and Runger and
Willemain(1995, 1996), among others. Alwan and Radson(1992) proposed the
monitoring of autocorrelation processes by plotting the averages of small
subgroups separated by lengths of skipping observations. Runger and Willemain
(1995, 1996) proposed subgroup means charts which plot averages of subgroups of
the raw data with no skipping observations.

Unfortunately, one cannot completely escape the effects of autocorrelation by
using charts based on residuals of time series model or subgroup means since the
performance of those approaches are poor relative to charts based on independent
data. Therefore, we propose a robust CUSUM control scheme without model
identification or subgrouping of the autocorrelated data.

2. Properties of the Cumulative Sum for
Dependent Processes

In this section we will show how to design the robust CUSUM chart for the
detection of level change in the dependent processes. The control limits of the
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proposed control charts are obtained using the CUSUM of the observations via the
concept of the mixingale and Brownian motion. We consider a process which
follows a linear process.

Xi=d(Be,= goﬂbke t—hs o))

where ¢(B)=1—¢;B— ¢,B*— ¢3B*—--- and &, is independent and identically
distributed with E(e;)=0 and E(&?) =0 It can be readily seen from (1) that
¢, is geometrically bounded, say, |¢Jd<Bo* for some B0, o=(0,1).

Let (£,F,P) denote a probability space and {X,:t=1} be a sequence of

random variables on (£, F, P). For weakly dependent data, the standard reference

is McLeish(1975a). McLeish's results include that a maximal inequality for Lg—
mixingales, a strong law of large numbers(SLLN) for L,-mixingales, and a -
mixing sequences. His mixingale requires L,-bounded random variables. In this

paper, however, maximal inequalities are provided for L, mixingales, p>1.
Mixingale covers cases which cannot be handled by the mixing process concept.

Let {F,:0<n<cc} be any sequence of sub o-algebras of F which are

increasing in #. Andrews(1988) defined an L ,~mixingale as follows.

Definition 1. (Mixingale) The sequence (X;F, is an L, mixingale if, for
sequences dof finite nonnegative constants c¢; and &, where £;—0 as k— 00, we
have for all =1, k=0,

(@) |E(X|F -l ,<€ycy and

(b) | X,— E(XAF ;4 N p<E& ps164.

Definition 2. (Size) {£&.} is of size —p If there exist a positive sequence
{L(E)} such that
(a) ;‘(kL(k))_l@O,

(b) L(k)—L(k—1)= Ok 'L(R)),
(c) L(k) is eventually nondecreasing and

(d) &=0((nL(k) %)
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Theorem 1. Let {X,} be a linear process in (1). Then {(X;, Fy)} is an L,-

mixingale of size —1/2.

Remark. If 2, ZS,I¢iI<OO; then 2E&l<co. For example, |$|<Bi ™" 2A>2, then

n=1

Q&) is finite.
Hence, we have the following theorem :

Theorem 2. If {(X,;,F)} is an L,~mixingale with &, of size —1/2, then

]
ox T 12 gXﬁW(r), 2)

where ox=E(X%)+2 ;IIE(XOX » and W is the standard Brownian motion.

For (2), we can easily show that o&%= 0. ¢*(1).

3. Proposed Robust Cusum Control Scheme

In this section, we will show how to obtain the empirical control limits of
CUSUM chart for dependent processes when the underlying model is unknown.

As with other control chart procedures, the process parameters must be
estimated from the process data so that the control limits can be determined.

Since oZX is obtained from the historical data the control limits can be estimated

more precisely with more data. To design a robust CUSUM chart for the purpose
of detecting shifts in the process level, the following three steps are proposed.
To construct the control limits, we need an estimator of the variance of

S,= tﬁ‘X , and a K of the control limit constant. We may estimate ozx and

lag-one autocorrelation, ©; from the historical data when the process was

in—-control.
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Step 1. Estimate p; and 02X using spectral based estimator,

oy =21 7(0)
3

= 7+2 gl AT

where f(0) is spectral density at frequency 0, W,(k) is Tukey-Hanning
lag-window, 7,= Cov (X, Xp).

Selecting control limits has implications not only on in-control but also on
out-of-control ARL.

In general, we favor the approach of developing control limits from an empirical
reference distribution based on the process data acquired during in—control process.
Hence, in this step, we consider whether historical data has no change point using

the following procedure.
Let S,= gX ; be the cumulative sum of a linear process {X,} with mean 0

and variance 02X. By Theorem 2, the plot of £V ZSk against £ will oscillate

around (. When there is a sudden change in mean, the plot of (4, kY 2Sk) will

exhibit a pattern going out of some specified control limits with high probability.
As a result of change point detection, if historical data has no change point, we
construct control limits using the historical data. Intuitively, this is necessary
condition for empirical design of control charts, since estimation of in—control ARL
would be impossible without the large number of observations available.

. .. . ~2 . .
Step 2. Determine the control limits using 0x obtained from Step 1, iLe,

UCL = +C- Koy,

LCL = —C- Koy,

where UCL is the upper control limit, LCL is the lower control limit, K is the

control limit constant, and C is a correction constant for the autocorrelation.

We will show how to obtain K and C in Section 4.1.
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Step 3. Calculate the cumulative sum of deviations from target aofter the k-th
obseruvation,

S = k2 SO0 ),

where 1, is a target value for the process, and plot (k, ET12S,).

Perform a sensitivity analysis by comparing out-of-control ARL’s for the
optimal K to other choices of K producing the same in-control ARL. From this
choice pick K with the most desirable performance overall in terms of

out-of-control ARL’s. The parameter K is required to implement the CUSUM.
This parameter is most conveniently determined by calculating the ARL for the
test procedure.

ARL can be calculated via Markov chain considerations, as a solution of a set
of integral equations, or via a Monte Carlo simulation, Van Dobben de Bruyn
(1968), once the distributional properties of the observations are specified. Tables
and nomograms are given in Lucas(1976) and Goel and Wu(1971) for the CUSUM
procedure when the inherent variability is independently and identically normally
distributed.

A control chart based on a robust CUSUM is fairly easy to operate and has
several implementation advantages over conventional procedures; (1) The important
implication of robust CUSUM chart is that one does not need to estimate an
ARMA model of the data. As distinct from residuals plots, robust CUSUM charts
retain the basic simplicity of cumulative summing of observations to form point on
the control chart. (2) The procedure of partial summing of successive observations
to generate a plotted point is simple and consistent with conventional approaches
to control charting both conceptually and mechanically. Because robust CUSUM
charts signal assignable causes when the plotted point is far from the centerline,
these charts provide a familiar signal when the estimate of the current processes
level deviates significantly from the historical process mean level or target. (3)
Features provided in most commercial SPC software can be used to plot these
control charts. We regard this as an important practical advantage.

Consequently, control charts based on robust CUSUM can be constructed and
interpreted according to traditional guidelines for uncorrelated data, namely, robust
CUSUM charts are easy to implement for dependent process, and they can be
interpreted as traditional control charts.
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4. Simulation Study

In this section we obtain the ARL’s of the proposed robust CUSUM procedures
and compare the performance of four control charts, CUSUM type, conventional
CUSUM, EWMA and robust CUSUM when the process can be described by either
the AR(1) or MA(1). The usual performance criterion for any control chart is the
ARL. In order to compare the performances of the charts more meaningfully for

different autoregressive and moving average parameter values, the ¢y multipliers

of the control charts ( K') are manipulated so that the ARL'’s, when there is no
shift in the mean, is the same for all four charts. Then the chart with lowest
ARL when a shifts in the mean occurred is considered superior. This is analogous
to matching the Type I errors so that the Type Il errors can be compared in a
more meaningful way. The ARL when the process mean deviates from the target
value, le, out-of-control, should be as short as possible, subject to a specified
ARL when the process is in-control. However, the autocorrelation in the process
data degrades the ARL performance, as shown for conventional CUSUM charts by
Johnson and BagshaW(1974) and Bagshaw and Johnson(1975).

For dependent processes, computation of the ARL’'s of the control charts is
analytically intractable and they are thus determined via simulation. For the
simulation, it is assumed that only one observation is available at each time period
and that all parameters are known exactly. Time series of sample size 2100 are
generated and the first 100 observations are discarded to reduce the effect of
initialization. A step change in the mean is introduced at time 0. The white noise
are drawn from normal distribution with zero mean and unit variance. In order to
obtain a comprehensive view of the effect of autocorrelation on the three control
charts, an experiment was designed over the AR(1) and MA(1) model. The run
length is measured until the first out-of-control condition is signaled for chart.
The process is repeated 5000 times in order to obtain the ARL.

4.1 Correction Constant and Design of Robust CUSUM Chart
It was shown by Johnson and Bagshaw(1974) that the ARL is much affected by
the autocorrelation structure of the underlying process as follows,

ARL(¢7) = —8—;2—3 < ARL(0) for AR(1) model,
2
ARL(6,) = 1+ 0) - ARL(0) for MA(1) model,

(1—6,)*
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where ARL(Q) is the theoretical ARL for the independent process.
As mentioned above, the ARL of autocorrelated process depends on the pattern
of autocorrelation function(ACF). For that reason, we adjust the control limits by

correction constant C, as follows,
C=1- sign(p;0) * (01— 02)2/5

where p, is a lag- £ ACF. Other choice of correction constants can be employed.
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Then, the design strategy is to choose the control limit constant K which for a
given in-control ARL, minimizes the out-of-control ARL for a shift in the process
mean. Generally speaking, both Type I and Type II errors are characterized by
these ARL’s. The corresponding analogue of the Type I error is the average
number of observations before an out-of-control signal is given when the process
is actually in control. The ARL corresponding to the Type II error is the average
number of observations that must be taken to detect a true process shift once one
has occurred. In general, optimal choice of K can be chosen according to the
following steps; (1) Choose the smallest acceptable ARL for the case there is no
shift in the process level. This corresponds to fixing the false alarm rate (Type I
error) and (2) Find the control limit constant K which satisfies the in-control
ARL constraint from (1). Choosing an acceptable ARL will often be based
informally on economic considerations such as the cost associated with a false
alarm.

New nomograms using the in-control ARL’s for dependent processes are
provided in Figures 1 and 2, which cover the independent cases provided by Ewan
and Kemp(1960) and Goel and Wu(1971). In Figures 1 and 2, optimal K's are
given for robust CUSUM charts with in-control ARL's ranging from 100 to 1000.

The contour nomogram is a convenient device for the design of robust CUSUM
charts, since the method of construction is relatively simple and straightforward.
The ARL surfaces can be easily visualized to get an intuitive insight when
designing a robust CUSUM chart.

Suppose a robust CUSUM chart is to be designed for controlling a process
mean such that the chart will yield an ARL of approximately 400 when the
process is in-control. Choice of K will depend on the magnitude of

autocorrelation, which should be detected quickly. From Figures 1 and 2, K is
approximately 1.2 to 1.5 ranging when a process was a positive autocorrelation
(0.3<¢;=<0.8 or —0.8<64,<—0.3), approximately 14 to 1.6 ranging when a

process was a negative autocorrelation (—0.8<¢;<—0.3 or 0.3<6,<0.8),

and approximately 1.57 when the process is independent (¢;= 6,=0).

4.2 ARL of the Control Charts When the Process is In-Control
Various criteria for designing a quality control chart for monitoring a process
mean have been suggested. We perform a simulation study to compare the
performance of the proposed control scheme with the CUSUM type, the
conventional CUSUM chart proposed by Bagshaw and Johnson(1974), and the
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EWMA chart. Since no results, ‘except Bagshaw and Johnson(1974), are available
on the exact distribution of run length for the CUSUM -charts in the presence of
autocorrelation, we investigated the ARL of another schemes based on simulated
trials.

The design of control chart procedure is usually based on the ARL of the
scheme, although other factors should be taken into consideration. Page(1961)
recommended the design of CUSUM chart to have specified ARL values at the
target mean p=0(. Robinson and Ho(1978) made the same recommendation for
constructing an EWMA chart. Woodall(1985) proposed a strategy for designing a
CUSUM chart that applies equally well to the design of EWMA charts. His
approach was to first specify a region of acceptable values for the process mean.
A control chart was then designed to have specified ARL values at two particular
shifts in the underlying process mean. Tables of ARL’s have been given in the
various literature, Montgomery(1991) for CUSUM charts, Crowder(1987a, 1987b) for
EWMA charts, and Lucas and Saccucci(1990) for both EWMA charts and
composite Shewhart-EWMA charts. For the majority of the comparisons, the ARL
associated with no shift in the mean is set approximately equal to 400 which is
the ARL of the standard Shewhart chart when there is no shift in the mean and
when observations are independent. To be complete, we also obtained results for
the case when the ARL with no shift and no autocorrelation in the mean is
approximately equal to 400. Many economic design results suggest that a smaller
value for K is more appropriate, Montgomery(1980).

In this simulation, parameters of each control charts are K=1.57 for the
CUSUM type and the robust CUSUM chart, A=0.12 and K=2.75 for the

EWMA chart, 2=19.3528 and %£=0.0408 for the conventional CUSUM chart.
Under the specified parameters of each chart, ARL is approximately equal to 400
when the processes are independent and in-control state.

The ARL will depend on the actual model the process follows and on the
values of control limit constant K. In the followings, we will investigate the
effect of autocorrelation structure upon the ARL. We concentrate on the models

AR(D : X, = $ X, te,

MA(].) : X,« = &;— €1€t~1-

The ARL’s of the resulting scheme for various values of ¢,'s and 6;’s are
given in Tables 1 and 2. Table 1 is obtained from the simulation of the AR(1)
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model with —1<{#;{1. From Table 1, we see that the four charts have the same

independent case. The ARL’s of conventional CUSUM
chart are exact values given by Johnson and Bagshaw(1974).

ARL’s when =0, ie,

< Table 1 > AR(1) Process :

Xi=$1 X 1te

CUSUM NonCorrection Robust Conventional
b Type CUSUM’ CUSUM EWMA CUSUM™
0.75 15.04( 0.38) | 805.91(12.16) | 792.32(12.11) 31.21( 0.38) 57.14
0.60 22.65( 1.04) | 668.70(11.76) | 640.75(11.59) 41.94( 0.54) 100.00
0.45 48.90( 255) | 608.07(1154) | 584.76(11.39) | 62.77( 0.8D) 151.72
0.30 104.87( 4.76) | 520.42(10.97) | 502.85(10.83) 98.69( 1.34) 215.38
0.15 211.16( 7.27) | 469.11(10.70) | 461.41(10.64) | 183.38( 2.57) 295.65
0.00 398.59(10.08) | 405.60(10.17) | 405.60(10.17) | 405.32( 5.41) 400.00
-0.15| 655.02(12.27) | 341.61( 950) | 349.70( 9.62) | 936.07( 9.48) 541.18
~0.30 | 1024.11(1347) | 266.97( 861) | 320.57( 9.38) 1600 1 742.86
-0.45 | 1521.29(14.82) | 21840( 7.87) | 343.35( 9.78) 1600 1 1054.55
-0.60 1600 1 148.34( 6.71) | 373.13(10.31) 1600 f 1600.00
~0.75 1600 1 79.67( 4.88) | 479.61(11.61) 1600 1 2800.00
( ): standard error of ARL
* : The correlation constant, C does not exact
**: exact value given by Johnson and Bagshaw (1974)
< Table 2 > MA(1) Process : X;=¢&,~ 6,€,-
CUSUM NonCorrection Robust Conventional
% Type CUSUM’ CUSUM EWMA CUSUM™
0.75 1600 1 1.44( 0.02) 1.40( 0.01) 1600 1 10000.00
0.60 1600 1 16.01( 2.07) 11.68( 1.69) 1600 1 3400.00
0.45 | 1690.68(14.92) 95.85( 5.35) 80.10( 4.84) 1600 1 1590.08
0.30 | 1145.43(13.45) 230.22( 8.16) 206.14( 7.71) 1600 1 839.80
0.15 | 701.74(12.56) 330.68( 9.44) 322.12( 9.33) | 1048.44( 9.95) 566.09
0.00 | 400.63(10.05) 399.67(10.04) 399.67(10.04) 399.71( 5.37) 400.00
~0.15 | 240.77( 7.85) 454.95(10.58) 448.00(10.52) 202.56( 2.77) 309.26
-0.30 | 161.54( 6.22) 485.34(10.74) 456.20(10.48) 133.03( 1.78) 257.99
=045 | 111.92( 4.92) 522.20(11.07) 457.21(10.48) 104.56( 1.38) 228.78
~0.60 89.04( 4.25) 521.05(11.06) - | 433.05(10.25) 89.56( 1.19) 212.50
~0.75 80.54( 4.02) 512.42(10.99) 416.53(10.08) 83.32( 1.11) 204.08

( ): standard error of ARL
* . The correlation constant, C does not exact
*x! exact value given by Johnson and Bagshaw (1974)
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Since we estimate the process variance using (3) instead of using the usual
estimator 0= (T—1) -1 g(X,—T()Z, the simulated ARL’s of the CUSUM

type chart show the same pattern of the theoretical results, ie, the ARL is

exponentially decreasing as the value of ¢; gets larger. This is because in the

CUSUM type chart the variance 02X is estimated under . the independence
assumption, when ¢,<0, it is exponentially increasing because of high

fluctuations. For p©; in opposite direction to that suggested by Johnson and
Bagshaw (1974) is necessary if spurious out—-of-control decision should be avoided.
The ARL of the EWMA chart shows the similar pattern to the conventional one.
For the NonCorrection CUSUM chart, ARL shows the different pattern to the
CUSUM type and conventional CUSUM chart because there use the difference

estimation method of oZX In contrast, the ARL of the robust CUSUM chart is

relatively flat regardless of the magnitude of the values of ¢;. Hence proposed

control scheme is more robust than the other control scheme in AR(1) model.
Table 2 is obtained from the simulation of the MA(1) model with —1<8<1.
From Table 2, the simulated ARL’s of the CUSUM type chart show the same
pattern of the theoretical results of Johnson and Bagshaw(1974), ie., the ARL is
exponentially increasing as the value of @; gets larger. The ARL of the EWMA
chart shows the similar pattern to the conventional one. For the NonCorrection
CUSUM chart, ARL shows the different pattern to the CUSUM type and
conventional CUSUM chart because there use the difference estimation method of

cf%(. In contrast, the ARL of the robust CUSUM chart is relatively flat regardless

of the magnitude of the values of §&,. Hence proposed control scheme also is

more robust than the other control scheme in MA(1) model.

As can be seen from Tables 1 and 2, the suggested method approximates the
true ARL’s fairly well. Also, the ARL of the proposed control scheme is flatter
than the other control scheme in Tables 1 and 2. For this reason, we called robust
CUSUM chart for the proposed control chart.

4.3 Power Comparison

Relative performances of the four control charts, CUSUM type, robust CUSUM,
EWMA, and conventional CUSUM chart, are compared by a Monte Carlo
simulation. The values of step change ranged from 0 to 5 standard deviations of
the process are introduced at time O and the number of samples until the point
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fall outside control limits are counted. For each chart, the above procedure is
in order to obtain the ARL's.

summarized in Table 3. Table 3 (a) for the independent process ( ¢; =0.0), Table

repeated 5000 times Simulation results are

3 (b) for positively autocorrelated process ( ¢;=0.6), and Table 3 (c) negatively
autocorrelated process ( ¢;=—0.6) when the underlying process is AR(1). We

choose the control limit constant K=1,5686 for independent case, K=1.3359 for
positively autocorrelated case, and K=1.5630 for negatively autocorrelated case
for the robust CUSUM using Figure 1 and the same constant K is used for the
CUSUM type chart. For the EWMA chart, parameters of control limits used
A=0.12 and K=2.75 and for the conventional CUSUM chart, parameters of
control limits used reference value, £=0.0408 and decision value, ~2=19.3528.
These parameters are selected such that the ARL associated with no shift in the
mean 1s approximately equal to 400. Table 3 compares the ARL of each of the
four charts versus the size of the shift in the mean for three cases.

< Table 3 > Comparison of Chart Performance : AR(1) Process

(a) Random Process : ¢;=0.0
EWMA® Conventional
e -
A K156 | K=1.5086 K=2.75 h=19.3528
) ) o k=0.0408
0.0 431.45(10.43) 434.32(10.46) 400.00 400.00
05 9.19( 0.14) 9.20( 0.14) 30.37 42.35
1.0 3.43( 0.04) 3.43( 0.04) 9.77 20.93
15 2.03( 0.02) 2.02( 0.02) 5.68 13.95
2.0 1.46( 0.01) 1.46( 0.01) 4.05 10.50
25 1.20( 0.01) 1.20( 0.01) 318 8.45
30 1.08( 0.00) 1.08( 0.00) 2.65 7.10
35 1.03( 0.00) 1.03( 0.00) 2.29 6.14
4.0 1.01( 0.00) 1.01( 0.00) 2.07 542
4.5 1.00¢ 0.00) 1.00( 0.00) 1.94 487
5.0 1.00( 0.00) 1.00( 0.00) 1.81 441

( ). standard error of ARL

* ! exact value given by Crowder (1987a, b)

**! exact value given by Lucas and Crosier (1982)
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< Table 3 > (continued)
(b) Positively Autocorrelated Process @ ¢;=10.6
Conventional
WM
C['I{SUM CPE)}S);S]‘:/I A EO 12A CUSUM
ype =V.
y K= 1p3359 K=1.3359 K=2.75 h=19.328
) ' o k=10.0408
0.0 13.23(0.59) 367.93(9.11) 41 .59(0.54) 86.00(1.01)
0.5 7.33(0.15) 28.94(0.48) 23.59(0.29) 35.58(0.32)
1.0 3.85(0.07) 9.78(0.13) 10.98(0.11) 17.61(0.11)
15 2.20(0.03) 4.80(0.06) 6.43(0.06) 11.50(0.06)
2.0 1.49(0.02) 3.04(0.03) 4.56(0.03) 8.75(0.04)
25 1.20(0.01) 2.05(0.02) 3.46(0.02) 7.03(0.03)
3.0 1.06(0.00) 1.52(0.01) 2.81(0.01 5.88(0.02)
35 1.01(0.00) 1.24(0.01) 2.39(0.01) 5.06(0.01)
40 1.00(0.00) 1.10(0.00) 2.14(0.01) 4.47(0.01)
45 1.00(0.00) 1.03¢0.00) 1.97(0.01) 4.02(0.01)
5.0 1.00(0.00) 1.01¢0.00) 1.82(0.01) 367(0.01)
( ) standard error of ARL
(c) Negatively Autocorrelated Process @ ¢;=—0.6
Conventional
o | pe | e | R
. Ko | Ke15630 | x—2.5 h= 19,508
) ) e k=10.0408
0.0 1648.97(10.63) 393.82(10.51) 1600 1 856.00(7.94)
05 30.35( 0.35) 7.38( 0.14) 1209.30(10.10) 31.42(0.08)
1.0 8.34( 0.09) 3.12( 0.04) 51.09( 0.51) 15.98(0.03)
15 4.20( 0.04) 2.05( 0.02) 16.54( 0.09) 10.84(0.02)
2.0 277 0.02) 1.64( 0.01) 10.31( 0.04) 8.27(0.01)
2.5 2.07( 0.02) 1.41¢ 0.01) 7.71( 0.02) 6.70(0.01)
3.0 1.71( 0.01) 1.28( 0.01) 6.36( 0.02) 5.67(0.01)
3.5 1.50( 0.01) 1.19¢ 0.01) 5.49( 0.01) 4.95(0.01)
4.0 1.35( 0.01) 1.14( 0.00) 4.87( 0.01) 4.33(0.01)
45 1.25( 0.01) 1.08( 0.00) 4.43( 0.01) 3.98(0.00)
5.0 1.17( 0.01) 1.05( 0.00) 4.11( 0.01) 3.66(0.01)

( ): standard error of ARL
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For the independent process, Table 3 (a), it is observed that the CUSUM type
and the robust CUSUM charts performs equally well and performs better than the
conventional CUSUM and EWMA charts. The ARL’s of the conventional CUSUM
and EWMA charts are exact values given by Lucas and Crosier (1982) and
Crowder (1987a, 1987b), respectively. For the conventional CUSUM and EWMA
charts, the ARL is calculated using the integral equation method with 24 Gaussian
points.

From Table 3 (b) for the positively autocorrelated case, we can clearly see that
the robust CUSUM chart outperforms the other charts. The small ARL’s of the
CUSUM type, conventional CUSUM and EWMA charts for 4=0.0 indicate that
they give the false alarm too often when there is no change in the process mean.

While the ARL of the robust CUSUM chart is not much different from the
independent case. Furthermore the larger ARL’s of the EWMA chart for 450.0
than the robust CUSUM chart indicated that it cannot detect the shift in the
process as quickly as the robust CUSUM chart.

For the negatively autocorrelated case, Table 3 (c), the value of ARL's for
4=0.0 as too large compared to the independent case. Hence the ARL’s for
470.0 are much different from the positively autocorrelated case.

Therefore, for the positively and negatively autocorrelated processes, from Table
3 (b) and (¢) the CUSUM type, conventional CUSUM and EWMA chart are often
useless in the autocorrelated environments. The robust CUSUM chart is a very
simple and useful tool when the process is autocorrelated.

44 Example
We simulate the AR(1) process with ¢;=0.6, 300 observation, single readings
taken every time point. The simulated process undergoes a step change with
4d=1ox at the middle of the process of observation 150. Figures 3 to 6 are
Shewhart, EWMA, conventional CUSUM, and robust CUSUM charts, respectively.
Figure 3 is the Shewhart chart for the simulated process. From visual

examination alone, we see that the series is obviously out-of-control in the middle
of the series, with strong evidence of positively autocorrelated behavior. The
sample mean is —0.2886 and the sample standard deviation is 1.2988, so
conventional 3¢ control limits would extend from —4.1850 to 3.6078, limits that
are shown in Figure 3. If a half of the data are viewed without regard to time
sequence, they conform very closely to the normal random variables. It is seen not
only that the data are positively autocorrelated, but that it is not even obvious
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that the data should be regarded as coming from stationary process. We see in
Figure 3 that these limits are wider than real limits. It is seen that no individual

points fall outside the 3¢ control limits, indicating that the process is in-control.

OBSERVATION EWMA
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g L

TIME INDEX 200

TIME INDEX

< Figure 3 > Shewhart Chart for < Figure 4 > EWMA Chart for
Simulated Process Simulated Process

cusum cusum

200 14
]
12
1t
10

100

100,

bAhlo-muwarnmus

TIME INDEX TIME INDEX

< Figure 5 > Conventional CUSUM < Figure 6 > Robust CUSUM Chart
Chart for Simulated Process for Simulated Process

Figure 4 is the EWMA chart in which control parameters are A=0.12 and
K=2.75. And also Figure 5 is the conventional CUSUM chart which control
limits are *+19.3528. Both charts give the false alarm too often when the process
is in-control, i.e., too many points fall outside the control limits. While the robust
CUSUM chart with control limits +2.0633 indicates the process is out-of-control
after observation 162. Consequently, it indicates that all but the robust CUSUM
chart have too many out-of-control points or no out-of-control points. Hence,

traditional means of monitoring quality for the detection of level change of
dependent processes may have yielded misleading results.
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5. Concluding Remarks

The result of this paper makes it clear that conventional control charts such as
the CUSUM chart are not completely robust to deviations from the assumption of
process randomness, that is, when observations are autocorrelated. The robust
CUSUM chart is being designed and implemented without relying of the
assumption of independence for the data. We showed that the level of in-control
ARL of the robust CUSUM is better than other control charts.

Strong law of large numbers, derived from our main result, Theorems 1 and 2,
are given in Section 2. All results were obtained under the assumption that the
control variable follows a normal distribution. In terms of algebra, our results are
unaffected by a change of this distribution.

The robust CUSUM chart is very effective in detecting shifts in the mean of
autocorrelated processes and performs especially well when the process is
positively autocerrelated. The robust CUSUM chart is thus a good alternative to
the more realizable method proposed by Alwan and Roberts (1988). Their
procedure may warrant the extra expense and efforts of modeling the correlated
systems. The robust CUSUM charts is an alternative tool for the process control
due to its practical convenience and robustness toward the autocorrelations. The
effect of serial correlations, represented by p1, 02,°*, on the ARL is discussed in

this paper on the basis of simulated ARL. Positive serial correlation drastically
increase the ARL as compared to the case when process is independent.

If the process can be described by a linear process, then the robust CUSUM
chart should be useful in determining which chart would be most beneficial, If
there is not a significant distinction between chart performance for the given
degree of autocorrelation, the EWMA chart, and possibly the conventional CUSUM
chart, may be more appealing because of its simplicity. On the other hand, in the
case where the robust CUSUM chart performs very well, implementation of this
chart should be considered strongly.
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