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Control Charts Based on Self-critical Estimation Process

Won, Hyung Gyoo
Dept. of Industrial Eng., Hansung University

Abstract

Shewhart control chart is a basic technique to monitor the state of a process.
We observe samples of size four or five and plot some statistic(e.g., mean or
range) of each sample on the chart. When setting up the chart, we need to obtain
upper and lower control limits. It is common practice that those limits are
calculated from the preliminary 20-40 samples presumed to be homogeneous.
However, it may happen in practice that the samples are contaminated by outlying
observations caused by various reasons. The presence of outlying observations
make the control limits wider and hence decrease the sensitivity of the charts. In
this paper, we introduce robust control charts with tighter control limits when
outlying observations are present in the preliminary samples. Examples will be
given via simulation study.

1. Introduction

Shewhart control chart is one of the most powerful technique to analyze the
behavior of any process. We collect a series of a subgroup of size four or five in
a rational way from the process and plot some statistic(e.g.,, mean or range),
obtained from each of the subgroup, on the chart. Serially plotted points in such a
way in time order reveal various information about the process through many
types of pattemns. If points scatters naturally in some statistical law, we say the
process is in statistical control, and if there are unnatural patterns, we say the
process is out of control. In the state of statistical control, we may expect the
process produce more uniform products.

Among the various unnatural patterns, one basic unnatural one is the point
falling beyond some statistical limits. To support our decision on this pattern,
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three statistical lines are drawn on the control chart. They are the upper control
limit, the lower control limit, and the center line for process average. Since the
three lines play important roles in interpreting and deciding other natural or
unnatural patterns also, the usefulness of the chart much depends on their correct
setting.

It is a common practice to set the positions of the lines from a series of
preliminary 20-40 groups of samples, which are obtained from presumably
in-control state of process. In other words, the assumption of in-control implies
statistical naturalness or homogeneity of the set of data. However, when
constructing the chart either for a new process or for any existing process for the
first time because of quality problems, it is practically difficult to assume the
process is in statistical control. In addition, errors of measurement or sampling
due to lack of experience may happen when collecting and recording the data.
Therefore, it is very likely that the preliminary set of data may contain some
nonhomogeneous observations from group to group or within each group. They
are different because they generally pose themselves far from the other most of
the observations. Therefore, we sometimes call them outliers.

When outliers are present, they tend to set the control limits wider through the
inflated statistics and estimates of parameters required for obtaining the control
limits. Then the control chart loses its sensitivity against unnatural patterms. The
usual methods of handling outliers are either to get rid of them and plot again, or
to winsorize observations in each group before estimating the required parameters,
or to use some robust estimators such as median[l, 2, 3, 4, 7, 9, 10]. In this paper,
we use a robust estimating procedure, called self-critical estimates, for parameter

estimation and suggest modified x-S type control charts with the control limits
set by the self-critical estimates.

2. Control chart and morphosis

Since W.A. Shewhart proposed the general theory of the control chart, the chart
has the general format with the center line(CL), the upper control limit(UCL), and
the lower control limit(LCL) as follows:

UCL = pws kO'W
CL = pw
LCL = puw_ kO'W
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where W is a sample statistic measuring some characteristic of our interest about
the process. gy is the mean of W and oy is the standard deviation of W. k is

the distance of control limits from the center line in the units of standard
deviation of W.

W is the statistic reacting very sensitively against any disturbances in the
process average and spread. Generally, for the problem of process shift in average,

we use the sample mean, x(or x-bar for notational convenience), and for the
spread we use either the sample range, R, or the sample standard deviation, S.
When outliers are present in any preliminary subgroup of observations, these
statistics lose their statistical efficiency very quickly[Huber, 1981]. It is our belief
that the fact that they react very sensitively against any change in the process is
very useful in the purpose of identifying any unnatural pattern in the on-going
process, but is inappropriate for the purpose of setting the control limits. Possible
outliers in the preliminary subgroups may inflate the width of control limits and
hence decrease the sensitivity of the control charts when the process is unduly
disturbed by some causes. The best compromise in this contradictory situation is
this: first, use robust estimators when estimating the parameters from the
preliminary samples and thereby keep the control limits tight and second, plot the
sensitive statistics on this charts. In the following sections, we will show this
strategy is useful for detecting some unnatural patterns, especially arising from
sampling error. To obtain robust estimates we use the self-critical estimates.

3. Self-critical estimation process

Self-critical estimate is obtained by maximizing the objective function, £,

L(O) = (1/0) 25 (i, /@1~ 1

where
Q= Q8,0 = [ 5, 0,

Equivalently, by taking derivative of £.8) with respect to § and setting them
equal to zero, the estimates are obtained by solving the estimating the equation
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When c=0, the objective function £.(8) is equivalent to the likelihood function
and hence is so for the estimating equation. The estimator, & (c), resulting from
the estimating equation, is a robust estimator and has an unbiased score. The
reason that the specific reality of this estimator is called self-critical estimate is
because the estimate is obtained in such a way that best optimize the information
in the data in face to the assumed model. We are not forgiving any single
observation, but instead, we use it as much as it fits the model(8].
For the normal distribution with its density form

_Llex=uy
2( I3 )_

f(x:u,02)=7—il7;-7@ =0,

we have estimating equations

__%_(La)z
Z..‘l(xi—ﬂ)e =0

_J_(Lﬁ)z
2 g _

Zl{(1+6)(xi—#)2—62}e = 0.

The self-critical estimators, £ (¢) and & %(¢), are obtained from the implicit equations

zxivic
e

Vi

— N2,
o = (1+0 Z(xizv:t) Vi

where

____g_( x-—g)z
Vie = € ‘
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For ¢ in a neighborhood of zero, the estimators 2 (c) and & “(c) are M-estimators
and consistent for ¢ and 02, when the xi1, X», .., Xa are a random sample from a
normal distribution with mean x and variance a'“’, provided the consistent zeros
of estimating equations are chosen. It also has been shown that /(c) and &°(c)
are asymptotically independently distributed. The asymptotic efficiencies remain
high over the range of values of c. The influence function for z(c) and & “(c) are
bounded and redescended to zero for all ¢>0.

4. self-critical x-S control charts

x-S control charts can be used without much difficulty in plants equipped with

computer facility. They are preferable to the popular x-R charts in statistical
points of view, especially when the sample size is moderately large, say greater
than 10. We obtain the 3-sigma control limits with the center line for the x
chart as follows:

UCL= x + A3 S
CL = x
LCL= x — A3 S

where x represents mean of the subgroup(sample) means, _x_, i=I, m and S
mean of the subgroup standard deviations, S, i=1, m, where m is the number of
subgroups. Also Aj is a constant read from the table as a function of the size of

subgroup. In the same context, the lines in the S chart is obtained from the
following equations:

UCL = B4S
CL= S
LCL = B;S

Also, B3 and By are constants which can be read in a table as a function of the
size of each subgroup.

While the parameters obtained in this way for the control limits have such a
good statistical property of unbiasness and efficiency for the process mean and
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standard deviation, their influence functions are unbounded in the presence of
outliers. When outliers are present, thev lose all the statistical good properties
quite easily[Huber, 1981]. If there is any outlier-generating mechanism within
subgroups and its influence prolongs over the period of collecting preliminary set
of data, the sensitivity of x and S by the mechanism is so great that the control
limits will be enlarged. The same scenario will take place more severely for the

x-R charts.

Therefore, we propose replacing x and S with corresponding self-critical
estimators, 2 (c) and &7(c) defined in section 3. Since they have robustness

against outliers, we expect tighter control limits. The self-critical x and S control
charts, symbolized with x(¢)—S(c¢), are defined as foliows. In x(¢) chart, control

limits are obtained in the following equations:

UCL = p g+ A0y
CL = x4y
LCL = u(»h—A30(

where Aj is the same constant as in equation for x-S charts. In S(c) chart, the
limits are calculated similarly as follows:

UCL = B4_&(C)
CL = 0
LCL = Bg_G_(C)

Once we have the limits, we plot sample mean and sample standard deviation of

each subgroup as in the x-S control charts. Since x-S control limits are easily
obtained in the process of obtaining self-critical estimates by setting self-critical
coefficient to zero, we can easily identify any different behavior of patterns
between the two charts. We can summarize the steps for constructing the

suggested x(c)-S(c) control charts as follows:

Initial step : Obtain 20-40 subgroups of appropriate size,
Decide the value of the self-critical coefficient, c.
Step 1! Obtain self-critical estimates, #,;(¢) and ¢,(C), for each subgroup

i, 1 = 1, m, for ¢=0 and ¢ given in the initial step.
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Step 2: Estimate parameters by taking averages of self-critical estimates
obtained at step 1.

Step 3: Calculate control limits of x(c)-S(c) control charts.
Step 4: Plot #,(c=0) and 0;,(c=0), fori =1 m

These steps require more computational effort of programming than the traditional
control charts. But with easy access to the computational power in recent
organizational environment, it is a tradeoff between computational effort and
increased sensitivity of the suggested control charts.

5. Examples by simulation

We compare the x(c)-S(c) control charts with the popular x-R and x-S
control charts by using Monte Carlo simulations. We simulate preliminary set of
data in the format of 25 subgroups with each size of 5 from normal random
numbers using the function random_normal() of IMSL(1994) with the initial seed
of 123457. We consider two examples, one for all preliminary data generated from
standard normal distribution and the other for the case of stratification. Stratifica-
tion is a type of pattern in which points are clustered around the center line and
few points appear near the control limits. This phenomenon happens due to
systematic sampling from two or more different causes of systems[11].

Example 1. all preliminary data generated by N(0, 1)

We generate standard normal random deviates of 25 subgroups, where each
subgroup possesses 5 random observations. <Figure 1 (a), (b)> show control
limits of x(c)-S(c) charts as a function of ¢ in the range of c=-05 to ¢=2.0. The
control limits show similar shape for 10 observations in each subgroup. Also in
the same figures, we see the number of subgroups whose summary statistics have
been plotted beyond the control limits. We observe 1 subgroup for the case of x
(c = -0.5) and some subgroups for the cases of S(c) over ¢ < -03 and ¢ = 15.
This implies the fact that if ¢ increases either negatively or positively from 0, the

control limits will have larger type I errors. Note that the control limits of ¢=0 are

equal to the hmits of ordinary x-S control charts.
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c UCL CL  LCL  freq

-0.5 1.015 -0.025 ~-1.065 1
-0.4 1.084 -0.016 ~-1.117 0
-0.3 1. 148 -0.011 ~-L.1I71 0
-0.2 1,206 -0.006 ~-1.219 0
-0.1 1.257 -0.002 -1.260 0
0.0 1.303 6.003 -1.297 0
0.1 1. 345 0.008 ~-1.328 0
0.2 1. 381 0.014 -1.353 0
0.3 1. 410 0.023 -1.364 0
0.4 1. 410 0.038 -1.333 0
0.5 1. 430 0.043 -1.344 0
0.6 1. 443 0.047 -1.350 0
0.7 1. 454 0.047 -1.359 0
0.8 1. 429 0.053 -1.323 0
0.9 1. 442 0.055 -1.132 0
1.0 1.421 0.059 -1.302 0
LS L1858 0.127 -0.933 0
2.0 1129 0.129 -0.871 0
Self-critical limits of x-bar charts ——UCL
s (all samples from N(0, 1)) aCL
1 //‘ ’\P
0.5
0 [+
O O T = S A A O e T I T - -
c‘S cia' ='>' cla' cIS - - T - - = S = = SR R - §
-0.5
1 L/“
AW /
-1.5

< Figure 1{a) > Control limits of x-bar (c) with n=5
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c UCL CL  LCL freq
-0.5 1.523 0.729 0 2
-0.4 1.611 0.7 0 1
-0.3 1.698 0.813 0 1
-0.2 1.774 0.849 0 0
-0.1 1.843 0.882 0 0
0.0 1.903 0.911 0 0
0.1 1.956 0.937 0 0
0.2 2.001 0.958 0 0
0.3 2.030 0.972 0 0
0.4 2.008 0.961 0 0
0.5 2.030 0.972 0 0
0.6 2.045 0.979 0 0
0.7 2.059 0.986 0 0
0.8 2.015 0.964 0 0
0.9 2.031 0.972 0 0
1.0 1.993 0.954 0 0
1.5 1.552 0.743 0 2
2.0 1.464 0.701 0 4
Self-critical limits of S charts
(all samples from N(0,1)) —e—UCL
2.5 —=-CL
—a—LCL
2.0 G
///r/‘
15 |4 3
.0 S
0.5
0.0 S Sy S e Sy SR Wil WSy Vv W W & c
[ =] < [~} o (=1 [=] (=] o [~} o o (=] (=] [ =] [ =] [~} (] (=]
wy <t o ol v [ =) . «3 oy <t vy N2 [ and oD o [} vy (=]
?' < ? <.= S 8 8 8 & S SO S 8 8 - eoa

< Figure 1(b) > Control limits of S(c) for n=5, m=25
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Example 2. case of stable mixture

5th observation in each subgroup 1is generated by non-standard normal
distribution, which is known as a case of stable mixture. This case is not the
same as mixture distributions, where contaminated distribution can place itself in
such a random way that any specific subgroup may or may not have one or more
observations. <Figure 2> shows the systematic sampling and its resulting
unnatural pattern in x chart. <Figure 3 (a), (b)> shows the control limits and the
number of subgroups out of control as a function of ¢, when the fifth observation
is contaminated by a nonstandard normal distribution with mean 0 and standard
deviation 3. We observe tighter control limits and some number of out-of-control
subgroups for ¢ = 0.4 approximately, compared with the limits of ¢=0. <Figure

4> shows two control charts on the same graph for ¢=0 and c=04. In x-S

charts, it is hard to see any unnatural pattern quickly, but in x(0.4)-S(0.4) charts,
the unnaturalness is magnificent owing to the 6th and 23rd points, which fall

beyond the control limits in S(0.4) chart. It is also notewothy that x-R charts in
<Figure 5> fail to show any stratification phenomina without difficulty of analysis

AN
N\

X115%125%135 %145 %5
sampling mechanism of stable mixture

in detail.

stratification

< Figure 2 > Sampling mechanism of stable mixture and pattern of stratification
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¢ UCL €L LCL freq
-0.5 1.574 -0.313 -2.200 0
-0.4 1.672 -0.249 -2.170 0
-0.3 1.795 -0.221 -2.238 0
-0.2  1.901 -0.194 -2.289 0
-0.1 1.991 -0.166 ~-2,324 0
0.0 2.066 -0.138 -2,341 0
0.1 2,122 -0.107 -2.336 0
0.2 2.151 -0.072 -2.295 0
0.3 1.925 -0.006 -1,937 0
0.4 1.734 0.082 -1.57t 0
0.5 1.697 0.114 -1.470 1
0.6 1.705 0.118 -1.468 1
0.7 1.682 0.123 -1,436 1
0.8 1.661 0.134 -1.394 1
0.9 1.615 0.157 -1.301 1
1.0 1.606 0. 1.59 -1.288 1
1.5 1.412 0.155 ~-1.101 4
2.0 1.358 0.186 -0.986 5
Self-critical limits of x-bar charts with each subgroup
contaminated by a N(0, 3%%2)
25 —o— UCL
) —a—CL
2.0 —a— LCL
A
1.5
1.0
0.5
0.0
N b oh r J\ L o o = JRY. § b ¢
-0.5 =3 cl' = S (= - TR - T - T - T - - T - T - T .. > |
-1.0
-1.5
'2. 0 /
-2.5 L '

< Figure 3(a) > Control limits of x-bar (0.4) with a contaminant by N(0, 3+3)
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c UCL CL LCL freq

0.5 2.763 1.323 0.0 1
-0.4  2.812 1.346 0.0 1
0.3 2.952 1.413 0.0 1
-0.2 3.067 1.468 0.0 1
-0.1 3.159 1.512 0.0 1
0.0 3.226 1.544 0.0 1
0.1 3.263 1.562 0.0 1
0.2 3.254 1.558 0.0 1
0.3 2.827 1.353 0.0 1
0.4 2.419 1.158 0.0 4
0.5 2.318 1.110 0.0 4
0.6 2.322 1.112 0.0 4
0.7 2.282 1.092 0.0 4
0.8 2.236 1.070 0.0 5
0.9 2135 1.022 0.0 5
1.0 2.119 1.014 0.0 5
1.5 1.839 0.880 0.0 6
2.0 1L716 0.822 0.0 8
Self-critical limits of S charts with a subgroup
contaminated by a N (0, 3%+2)
—o—UCL
3.5 CcL
—a—LCL
3.0 P
‘r——‘r’,ﬂﬁ' \\\\\\
2.5 \
2.0 ‘\\
\0
1.5 e
1.0
0.5
0.0 : ’ : —a
vy <r Laa ) o~ - (=] - [} . -t Lz) o [l oo o o v (=3
§ S S S S S S S S S S S S S S <A

< Figure 3(b) > Control limits of S (0.4) charts with a contaminant by N(0, 3+3)
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< Figure 4 > Control charts of x~bar(c) and S(c) for ¢
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< Figure 5 > Control charts of x-bar and R for the simulated example
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We extended the Monte Carlo simulation by considering lager ranges of
parameters of the non-standard normal distributions. <Table 1> and <Table 2>
show the number of subgroups whose summary statistics are positioned out of the
control limits for the subgroup size of n=5 and n=10. The ranges we considered in
this table as a contaminating distribution are #=0, 3, 5 and o¢=1, 3, 5. This table
shows that for the case of stable mixture the value of critical coefficient from 0.3
to 0.5 are good enough to detect unnaturalness for the subgroup sizes of 5 and 10.
For smaller subgroup sizes, for example, such as 3 or 4, we need to consider the
coefficient larger than 0.6 and thereby increase the robustness of the self-critical
estimators.

< Table 1 > Number of subgroups out of the control limits for the
case of stratification (n = 5, m = 25)

N(0, 1) N(0, 3) N(0, 5)|N(3, 1) N(3, 3) N(3, 5}|N(5, 1) N(5, 3) N(5, 5)
x-R x 0 0 0 0 0 0 0 0 0
charts R 0 1 1 0 0 0 0 0 1
x-S x 0 0 0 0 0 0 0 0 0
charts S 0 1 1 0 1 0 0 0 1
x(c)-S(c)|_x(0.3) 0 0 1 0 0 1 0 1 6
charts S(0.3) 0 1 6 0 1 9 1 8 11
x(0.4) 0 0 5 0 4 6 1 4 7
5(0.4) 0 4 10 0 7 11 7 10 12
x(0.5) 0 1 8 0 4 7 2 5 8
S(0.5) 0 4 15 1 8 13 15 12 14

< Table 2 > Number of subgroups out of the control limits for the
case of stratification (n = 10, m = 25)

N(0, 1) N(0, 3) N(0, 5)|N(3, 1) N(3, 3) N(3, 5)[N(5, 1) N(5, 3) N(5, 5)
*-R P 0 0 0 0 0 0 0 0 0
charts R 0 2 2 0 1 1 0 1 2
*-S P 0 0 0 0 0 0 0 0 0
charts S 0 1 2 0 ] 1 0 1 2
x(c)-Sc)| x(0.3) 0 0 3 0 2 4 3 4
charts S(0.3) 0 3 8 0 8 11 13 14
x(0.4) 0 1 3 0 3 4 0 4 4
5(0.4) 0 3 11 0 8 11 12 13 14
%(05) 0 2 5 0 3 5 2 4 5
S(05) 0 4 11 0 9 11 15 13 14
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6. Conclusions

When we set up control charts in order to monitor the state of any process, it
is quite often that preliminary set of data may posses errors of observations.
These observational errors will make the control limits inflated and hence decrease
the sensitivity of the charts. To keep the limits tight, we suggested use of a
robust estimators, called self-critical estimators. We can control the degree of
influence by the observational errors to the estimators by changing the user-given
self-critical coefficient. For the case of stable mixture the values of ¢ ranged from
0.3 to 0.5 are recommended in most of the practical situations of subgroup sizes
more than 5.
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