• 제목/요약/키워드: Robust Beamforming

검색결과 42건 처리시간 0.701초

Impact Noise Source Localization in Noise (잡음 속에 묻힌 충격 소음원 위치 추정)

  • 최영철;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.774-779
    • /
    • 2004
  • This paper addresses the way in which we can find where impact noise sources are. Specifically, we have an interest in the case that the signal is embedded in noise. We propose a signal processing method that can identify impulsive sources’location. The method is robust with respect to noise; spatially distributed noise. This has been achieved by a beamforming method with regard to cepstrum domain is used. It is noteworthy that the cepstrum has the ability to detect periodic pulse signal in noise. Numerical simulation and experiments are performed to verify the method. Results show that the proposed technique is quite powerful for localizing the faults in noisy environments. The method also required less microphones than conventional beamforming method.

  • PDF

Impulsive Source Localization in Noise (잡음 속에 묻힌 임펄스 소음원 위치 추정)

  • Kim Yang-Hann;Choi Young-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제14권9호
    • /
    • pp.877-883
    • /
    • 2004
  • This paper addresses the way in which we can find where impulsive noise sources are. Specifically, we have an interest in the case that the signal is embedded in noise. We propose a signal processing method that can identify impulsive sources' location. The method is robust with respect to spatially distributed noise. This has been achieved by the modified beamforming method with regard to cepstrum domain is used. It is noteworthy that the cepstrum has the ability to detect periodic pulse signal in noise. Numerical simulation and experiments are performed to verify the method. Results show that the proposed technique is quite powerful for localizing the faults in noisy environments. The method also required less microphones than conventional beamforming method.

Adaptive beamforming for a PF-OFDM system using LMS algorithm (LMS기반 PF-OFDM에서의 적응 빔포밍 설계)

  • Yoo, Kyung-Rul;Oh, Jun-Suk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • 제55권3호
    • /
    • pp.119-123
    • /
    • 2006
  • The orthogonal frequency-division multiplexing (OFDM) technique is well known to be robust against the frequency-selective fading in wireless channels. It is due to the exploitation of a guard interval that is inserted at beginning of each OFDM symbol. Based on the conventional OFDM and a polyphase filtered orthogonal frequency division multiplexing (PF-OFDM) technique, we developed an adaptive beamforming algorithm for antenna arrays. The proposed algorithm would lead to an efficient use of channel, since it is possible to eliminate a guard interval and also easily suppress interchannel interference at the same time. In this paper, a series of computer simulations have been provided to show the performance of the proposed system.

Eigenspace-Based Adaptive Array Robust to Steering Errors By Effective Interference Subspace Estimation (효과적인 간섭 부공간 추정을 통한 조향에러에 강인한 고유공간 기반 적응 어레이)

  • Choi, Yang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제37권4A호
    • /
    • pp.269-277
    • /
    • 2012
  • When there are mismatches between the beamforming steering vector and the array response vector for the desired signal, the performance can be severely degraded as the adaptive array attempts to suppress the desired signal as well as interferences. In this paper, an robust method is proposed for the adaptive array in the presence of both direction errors and random errors in the steering vector. The proposed method first finds a signal-plus-interference subspace (SIS) from the correlation matrix, which in turn is exploited to extract an interference subspace based on the structure of a uniform linear array (ULA), the effect of the desired signal direction vector being reduced as much as possible. Then, the weight vector is attained to be orthogonal to the interference subspace. Simulation shows that the proposed method, in terms of signal-to-interference plus noise ratio (SINR), outperforms existing ones such as the doubly constrained robust Capon beamformer (DCRCB).

Robust Adaptive Beamforming Using Bayesian Beam-former : A Review

  • Lee, Hyun-Seok;Yoo, Kyung-Sang;Ryu, Hee-Seob;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.95.6-95
    • /
    • 2002
  • 1. Introduction 2. Basic Concepts 2.1 Signal Model 2.2. Least-Mean-Square Adaptation Algorithm 3. Minimum Mean-Square Error 4. Bayesian Beamformer References

  • PDF

SDP-Based Adaptive Beamforming with a Direction Range (방향범위를 이용한 SDP 기반 적응 빔 형성)

  • Choi, Yang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제39A권9호
    • /
    • pp.519-527
    • /
    • 2014
  • Adaptive arrays can minimize contributions from interferences incident onto an sensor array while preserving a signal the direction vector of which corresponds to the array steering vector to within a scalar factor. If there exist errors in the steering vector, severe performance degradation can be caused since the desired signal is misunderstood as an interference by the array. This paper presents an adaptive beamforming method which is robust against steering vector errors, exploiting a range of the desired signal direction. In the presented method, an correlation matrix of array response vectors is obtained through integration over the direction range and a minimization problem is formulated using some eigenvectors of the correlation matrix such that a more accurate steering vector than initially given one can be found. The minimization problem is transformed into a relaxed SDP (semidefinite program) problem, which can be effectively solved since it is a sort of convex optimization. Simulation results show that the proposed method outperforms existing ones such as ORM (outside-range-based method) and USM (uncertainty-based method).

A BER Analysis of a Space-Time Signal Processing Scheme that Combines Transmitter Diversity and Beamforming in Correlated Fading (상관 페이딩에서의 송신 다이버시티와 송신 빔형성 기술을 결합한 시공간 신호 처리 구조의 BER 해석)

  • 김일한;전주환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제29권2C호
    • /
    • pp.247-254
    • /
    • 2004
  • We introduce a new space-time signal processing scheme that uses both transmitter diversity technique and transmitter beamforming technique for code-division multiple access (CDMA) systems. Over complex Gaussian Rayleigh channel, the introduced scheme achieves the diveristy gain through the transmitter diversity technique. and the SNR gain by th transmitter beamforming technique. Bit error rate (BER) analyses are given to each of the three cases in which the transmitter diversity scheme, the transmitter beamforming scheme and the introduced scheme are used, in the slowly varying Rayleigh frequency nonselective fading channel. The Monte-Carlo simulation results are shown to match to the analytic results. When the channels between distant antennas are independent, analytic results show that the introduced scheme achieves the lowest $E_{b/}$ $N_{0}$ at target BER 10$^{-6}$ . When the channels between distant antennas are correlated, analytic and simulation results show that the introduced scheme is more robust to the change of channel correlation.n.

Beamforming Optimization for Multiuser Two-Tier Networks

  • Jeong, Young-Min;Quek, Tony Q.S.;Shin, Hyun-Dong
    • Journal of Communications and Networks
    • /
    • 제13권4호
    • /
    • pp.327-338
    • /
    • 2011
  • With the incitation to reduce power consumption and the aggressive reuse of spectral resources, there is an inevitable trend towards the deployment of small-cell networks by decomposing a traditional single-tier network into a multi-tier network with very high throughput per network area. However, this cell size reduction increases the complexity of network operation and the severity of cross-tier interference. In this paper, we consider a downlink two-tier network comprising of a multiple-antenna macrocell base station and a single femtocell access point, each serving multiples users with a single antenna. In this scenario, we treat the following beamforming optimization problems: i) Total transmit power minimization problem; ii) mean-square error balancing problem; and iii) interference power minimization problem. In the presence of perfect channel state information (CSI), we formulate the optimization algorithms in a centralized manner and determine the optimal beamformers using standard convex optimization techniques. In addition, we propose semi-decentralized algorithms to overcome the drawback of centralized design by introducing the signal-to-leakage plus noise ratio criteria. Taking into account imperfect CSI for both centralized and semi-decentralized approaches, we also propose robust algorithms tailored by the worst-case design to mitigate the effect of channel uncertainty. Finally, numerical results are presented to validate our proposed algorithms.

Gradient On-Off Beamforming Algorithm Based On Eigen-Space Method For a Smart Antenna In IS-2000 1X Signal Environment (IS-2000 1X 신호 환경하에서의 고유공간 방법에 근간한 그래디언트 온-오프 빔평성 알고리즘)

  • 이정자;이원철;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제28권10C호
    • /
    • pp.949-957
    • /
    • 2003
  • This paper presents a gradient ON-OFF algorithm of which the performance is very robust even when the angle spread increases in the mobile communication environments. The proposed method getting the diversity gain by utilizing the primary and secondary eigenvector, which corresponds to the largest and the second largest eigenvalue of the autocovariance matrix of the received signal vector, outperforms the method which just utilizes one eigenvector. By applying the proposed method to IS-2000 1X signal environments, it is observed that the proposed method shows excellent performance compared to a typical beamforming method using just one eigenvector, which considerably degrades the receiving performance as the angle spread increases.

Adaptive beamforming for a PF-OFDM system using LMS algorithm (LMS기반 PF-OFDM엔서의 적응 빔포밍 설계)

  • Oh, Jun-Suk;Kim, Jae-Yun;Yoo, Kyung-Yul
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2998-3000
    • /
    • 2005
  • The orthogonal frequency-division multiplexing (OFDM) technique is well known to be robust against the frequency-selective fading in wireless channels. It is due to the exploitation of a guard interval that is inserted at beginning of each OFDM symbol. Based or the conventional OFDM and a polyphase filtered orthogonal frequency division multiplexing (PF-OFDM) technique, we developed an adaptive beamforming algorithm for antenna arrays. The proposed algorithm would lead to an efficient use of channel, since it is possible to eliminate a guard interval and also easily suppress interchannel interference at the same time. In this paper, a series of computer simulations have been provided to show the performance of the proposed system.

  • PDF