• Title/Summary/Keyword: Robust Adaptive Control

Search Result 536, Processing Time 0.034 seconds

Self-Recurrent Wavelet Neural Network Based Adaptive Backstepping Control for Steering Control of an Autonomous Underwater Vehicle (수중 자율 운동체의 방향 제어를 위한 자기회귀 웨이블릿 신경회로망 기반 적응 백스테핑 제어)

  • Seo, Kyoung-Cheol;Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.406-413
    • /
    • 2007
  • This paper proposes a self-recurrent wavelet neural network(SRWNN) based adaptive backstepping control technique for the robust steering control of autonomous underwater vehicles(AUVs) with unknown model uncertainties and external disturbance. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the steering model of AUV. The adaptation laws for the weights of SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for the on-line control of AUV. Finally, simulation results for steering control of an AUV with unknown model uncertainties and external disturbance are included to illustrate the effectiveness of the proposed method.

Asymptotically Stable Adaptive Load Torque Observer for Precision Position Control of BLDC Motor

  • 고종선
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.97-100
    • /
    • 1997
  • A new control method for the robust position control of a brushless DC(BLDC) motor using the asymptotically stable adaptive load torque observer is presented. A precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method. And the application of the load torque observer is published in [1] using fixed gain. However, the flux linkage is not exactly known for a load torque observer. Therefore, a model reference adaptive observer is considered to overcome the problem of the unknown parameter in this paper. And stability analysis is carried out using Liapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current having the fast response.

  • PDF

Design of an Adaptive $H_{\infty}$ Controller for Linear Induction Motor

  • Hyun, Keun-Ho;Son, In-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.598-603
    • /
    • 2005
  • In this study, an adaptive control scheme with a pre-specified $H_{\infty}$ property is proposed for the tracking control of linear induction motor (LIM) drive system. Under the influence of uncertainties and external disturbances, by using nonlinear decoupling and parameter tuner, the robust performance control problem is formulated as a nonlinear $H_{\infty}$ problem and solved by a quadratic storage function. This new design method is able to track the step and several periodic commands with improved performance in face of parameter perturbations and external disturbances. Simulation and experimental results are provided to demonstrate the effectiveness of the proposed adaptive $H_{\infty}$ controller.

  • PDF

Speed Control of Induction Motor Using Fuzzy-Sliding Adaptive Controller (퍼지-슬라이딩 모드 적응제어기에 의한 유도기 속도제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Chan-Ki;Yang, Sung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.331-333
    • /
    • 1995
  • A high performance motor drive system must have a good speed command tracking, a insensitivity to a parameter variation and sampling time. In this paper, a robust speed controller for an induction motor is proposed. The speed controller is fuzzy-sliding adaptive controller and its system continuously is varied. That is, only P gain act in dynamic state, I gain in steady-state. Because this system is a sort of adaptive control system, global stability analysis is used to Lyapunov function. Consequently, in this paper application of fuzzy sliding adaptive controller to induction motor controlled by vecter control is presented and the control system is digitally implemented within DSP.

  • PDF

Robust NN Controller for Autonomous Diving Control of an AUV

  • Li, Ji-Hong;Lee, Pan-Mook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.107-112
    • /
    • 2003
  • In general, the dynamics of autonomous underwater vehicles(AUVs) are highly nonlinear and time-varying, and the hydrodynamic coefficients of vehicles are hard to estimate accurately because of the variations of these coefficients with different navigation conditions. For this reason, in this paper, the control gain function is assumed to be unknown and the exogenous input term is assumed to be unbounded, although it still satisfies certain restrict condition. And these two kinds of wild assumptions have been seldom handled simultaneously in one system because of the difficulty of stability analysis. Under the above two relaxed assumptions, a robust neural network control scheme is presented for autonomous diving control of an AUV, and can guarantee that all the signals in the closed-loop system are UUB (uniformly ultimately bounded). Some practical features of the proposed control law are also discussed.

  • PDF

Design of an Adaptive Fuzzy Controller and Its Application to Controlling Uncertain Chaotic Systems

  • Rark, Chang-woo;Lee, Chang-Hoon;Kim, Jung-Hwan;Kim, Seungho;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.95-105
    • /
    • 2001
  • In this paper, in order to control uncertain chaotic system, an adaptive fuzzy control(AFC) scheme is developed for the multi-input/multi-output plants represented by the Takagi-Sugeno(T-S) fuzzy models. The proposed AFC scheme provides robust tracking of a desired signal for the T-S fuzzy systems with uncertain parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the chaotic state tracks the state of the stable reference model(SRM) asymptotically with time for any bounded reference input signal. The suggested AFC design technique is applied for the control of an uncertain Lorenz system based on T-S fuzzy model such as stabilization, synchronization and chaotic model following control(CMFC).

  • PDF

Design of Optimized Adaptive PID Control Structures using Model Reduction and RLSE (모델축소와 RLSE을 이용한 최적화 적응형 PID 제어 구조 설계)

  • Cho, Joon-Ho;Choi, Jeoung-Nae;Hwang, Hyung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.609-615
    • /
    • 2007
  • We propose an optimized adaptive PID control scheme. This paper is focused on the development of model reduction as well as a new adoptive control structure (viz. a recursive least square estimation (RLSE) method-based structure) that is constructed with smith-predictor structure and a real time estimator. The estimator adjust parameters of a reduced model in real time. It leads to robust and superb control performance for the noise or variation of parameters of process. Experimental study reveals that the proposed control structure exhibits more superb output performance in comparison to some previous methods.

Robust Low-complexity Design for Tracking Control of Uncertain Switched Pure-feedback Systems with Unknown Control Direction (미지의 방향성을 갖는 불확실한 스위치드 순궤환 시스템의 추종 제어를 위한 강인 저 복잡성 설계)

  • Lee, Seung-Woo;Yoo, Sung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.153-158
    • /
    • 2017
  • This paper investigates a robust low-complexity design problem for tracking control of uncertain switched pure-feedback systems in the presence of unknown control direction. The completely unknown non-affine nonlinearities are assumed to be arbitrarily switched. By combining the nonlinear error transformation technique and Nussbaum-type functions, a robust tracking controller is designed without using any adaptive function approximators. Thus, compared with existing results, the proposed control scheme has the low-complexity property. From Lyapunov stability theory, it is shown that the tracking error remains within the preassigned transient and steady-state error bounds.

Dynamics Identification and Robust Control Performance Evaluation of Towing Rope under Rope Length Variation

  • Tran, Anh-Minh D.;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • Lately, tugboats are widely used to maneuver vessels by pushing or towing them where tugboats use rope. In order to correctly control the motion of tugboat and towed vessel, the dynamics of the towline would be well identified. In real application environment, the towing rope length changes and the towing load is not constant due to the various sizes of towed vessel. And there are many ropes made by many types of materials. It means that it is not easy to obtain rope dynamics, such that it is too difficult to satisfy the given control purpose by designing control system. Thus real time identification or adaptive control system design method may be a solution. However it is necessary to secure sufficient information about rope dynamics to obtain desirable control performance. In this paper, the authors try to have several rope dynamic models by changing the rope length to consider real application conditions. Among them, a representative model is selected and the others are considered as uncertain models which are considered in control system design. The authors design a robust control to cope with strong uncertain and nonlinear property included in the real plant. The designed control system based on robust control framework is evaluated by simulation.

Adaptive Fuzzy Excitation Controller for Power System Stabilization (전력계통 안정화를 위한 적응 퍼지 여자 제어기)

  • Park, Jang-Hyun;Chang, Young-Hak;Lee, Jin;Moon, Chae-Joo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.693-696
    • /
    • 2005
  • We propose a robust adaptive fuzzy controller for the transient stability and voltage regulation of a single-machine inflnite bus power system. The proposed control scheme is based on the input-output linearization to eliminate the system nonlinearities. To deal with uncertainties due to a parameter variation or a fault, we introduce fuzzy systems with universal function approximating capability which estimate the uncertainties on-line.

  • PDF