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Abstract: In general, the dynamics of autonomous underwater vehicles(AUVs) are highly nonlinear and time-varying, and the 
hydrodynamic coefficients of vehicles are hard to estimate accurately because of the variations of these coefficients with different 
navigation conditions. For this reason, in this paper, the control gain function is assumed to be unknown and the exogenous input 
term is assumed to be unbounded, although it still satisfies certain restrict condition. And these two kinds of wild assumptions have 
been seldom handled simultaneously in one system because of the difficulty of stability analysis. Under the above two relaxed 
assumptions, a robust neural network control scheme is presented for autonomous diving control of an AUV, and can guarantee 
that all the signals in the closed-loop system are UUB (uniformly ultimately bounded). Some practical features of the proposed 
control law are also discussed. 
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1. INTRODUCTION 

In recent two decades, robust adaptive control has become a 
powerful methodology in the control problem of nonlinear 
uncertain systems, and several correspondent control methods 
have been developed. By using the adaptive backstepping 
design procedure, Kanellakopoulos et al. [1] have presented a 
systematic design of globally stable and asymptotically 
tracking adaptive controllers for a class of nonlinear systems 
transformable to a parametric strict-feedback form. The over- 
parameterization problem was soon overcome by Krstic et al. 
[2] by introducing the concept of tuning function. Krstic et al. 
[3] also introduced the nonlinear damping to improve the 
transient performance of the control system. In these design 
procedures, the only handled uncertainties were that could be 
linearly parameterized by unknown constant parameters. 

Due to the approximation capacities of neural networks for 
nonlinear mappings [4,5] and their learning characteristics, 
there have been a considerable interests in exploring the 
applications of neural networks to the control of nonlinear 
uncertain systems [6-11]. The main characteristic of the neural 
network adaptive control scheme is just to approximate the 
smooth uncertainties of the systems using neural networks, 
and this can relax the restrict conditions in the previous 
adaptive control scheme where the uncertainties were assumed 
to be linearly parameterized. For the remained uncertainties, 
such as exogenous inputs and neural networks’ reconstruction 
errors, there are various wild assumptions on them to progress 
the stability analysis. In [6,9], exogenous input terms were 
assumed to be bounded by known constants, and in [7,8,10], 
they were bounded by unknown constants, and they also 
assumed to be bounded by known function [11]. Recently, 
there were another kinds of various wild assumptions on the 
control gain functions of NN adaptive control scheme. In [7,8], 
they were assumed to be known, and in [6,11], they were 
assumed to be unknown and approximated by neural networks, 
in [9], the control gain function was assumed to be bounded 
by known functions.  

In recent two decades, underwater robotic vehicles (URVs) 
have become an intense area of oceanic research because of 
their emerging applications. However, unfortunately, URVs’ 
dynamics are highly nonlinear and time-varying, and the 
hydrodynamic coefficients of vehicles are difficult to be 
identified exactly in priori because of the variations of these 
coefficients with the vehicle’s different navigation conditions. 

For this reason, in general, URVs’ dynamics often include 
unknown exogenous input terms, and the control gain 
functions also could not be known exactly. In this paper, the 
exogenous input term of the AUV’s dynamics is assumed to be 
unbounded, although it still satisfies certain restricting 
condition - Lipschitz condition with unknown Lipschitz 
constant. And the gain function of control is assumed to be 
unknown with known sign. Under these two relaxed wild 
assumptions, presented robust NN control scheme can 
guarantee that all the signals in the closed-loop system satisfy 
to be UUB. Some practical features of the proposed control 
law are also discussed. 

2. PROBLEM STATEMENTS 

The dynamic behaviour of an AUV can be described in 
common way [13] through a 6DOF nonlinear equation 

,)(),()( τηηηηηη =+++ dgCM D &&&&                    (2.1) 

where  is the position and orientation 
vector,  is inertia matrix (including added mass),  

D  is matrix of Coriolis, centripetal and damping 
term,  is gravitational forces and moments vector, 

 denotes the exogenous input vector, and 
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d τ  is the input 
torque vector. Further, we define  be the 
velocity and angular rate vector. 
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The diving equations of the AUV should include the heave 
velocity , the angular velocity in pitch , the pitch angle w q
θ , the depth z  and the stern plane deflection and/or thrust 
force of the propellers. Restricting the vehicle in the constant 
forward motion and, for simplicity, assume that the heave 
velocity during diving is small and negligible. This is quite 
realistic since most small underwater vehicles move slowly in 
the vertical direction. Further, in general, underwater vehicles 
are designed to have symmetric structures and it is reasonable 
to assume that the body fixed coordinate is located at the 
center of gravity with the gravity force equal to the buoyancy 
force of the vehicle. Consequently, the pitch and depth motion 
of the vehicle during diving can be expressed as following, 
which is a certain modified expression from [13,14] 
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Assumption 3: On a certain compact regionΩ  6ℜ⊂where  is a known constant forward speed,  denotes 
the uncertainty of the vehicle,  and  are defined as 

0u

(1 M

zf∆
qf b

),,: gCf Dq ζ= , )(: 2 Mb ζ=  with )(⋅1ζ  and )(2 ⋅ζ  
smooth functions. 
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where  is an unknown constant. 06 ≥cDue to the highly nonlinear dynamics of URVs and the 
unpredictable environments of the vehicles, in the most 
applications of AUVs, it is hard to determine the exact values 
of  and DCM , g  in the equation (2.1) in priori. For this 
reason, we make the following assumptions on equation (2.2). 

3. ROBUST NN CONTROLLER DESIGN 

The obgective of the autonomous diving control of an AUV 
can be expressed as: consider the nonlinear uncertain system 
(2.2) with a given desired trajectory d , design a control 
input torque 

z
θτ  such that the tracking error dz zze −=  and 

all other signals in the closed-loop are guaranteed to be UUB.  

Assumption 1: Exogenous input term  satisfies that zf∆
)(3 zf z ζ⋅∆=∆ , where |  and  is an unknown 

constant. Further, unknown function 3

1| c≤∆ 1
)z

c
(ζ  satisfies certain 

Lipschitz condition with unknown Lipschitz constant , 
such that 

2c
3| c+2 ||) zc≤3 (| zζ , where  is also an unknown 

constant. 
3c Step 1 

First equation of (2.2) can be rewritten in the tracking error 
form as following Assumption 2:  and b  are smooth unknown functions, 

and  is known sign and nonzero. Without any loss of 
generality, we assume that  with  unknown 
constant. Further, the derivative of b  is assumed to be 
bounded by unknown constant  such that . 

qf
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Lemma: Consider the dynamical equation (3.1) with 
Assumption 1, where pitch angle θ  considered as control 
input. If the control law is chosen as 

Remark 1: In general, most of URVs are designed to move 
slowly in the deepsea environment. In this case, the control 
gain function  varies slowly, and this make the Assumption 
2 be reasonable. 

b
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where  is a design parameter,  and  are the 
estimations of certain unknown constants  and , which 
will be defined later, 1

01 >k 1L̂
L
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σ  is a certain strictly positive definite 
design parameter, and )tanh(⋅  denotes hyperbolic function. 
And the parameter update laws are chosen as 

Using above Assumption 2, the final equation of (2.2) can 
be rewritten as 
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            (3.3) Here we want to approximate the first terms of the right 

sides of the above equation using neural network. According 
to Assumption 2, the smooth term  can be written in 
the parametric form [8] 

qfb 1−

where 2121 ,,, ααγγ  are certain strictly positive definite 
weghting factors, and  are certain design parameters. 
Then, all the signals in the closed-loop system are guaranteed 
to be UUB. 
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where  is a constant vector and  
is a basis function vector of . If the basis of a function 
is exactly known, then the functional approximation problem 
can be converted to the well-known parameter estimation 
problem. However, in practice, we could not exactly know the 
basis of an unknown function in priori, and there always 
remains network’s reconstruction error. Consequently, (2.4) 
can be expressed as 

** NW ℜ∈ ** ),,( Nℜ∈ηηηφ &&&

qfb 1− Proof: See Appendix. 

According to Lemma, we choose the stabilizing function 
dθ  as following 
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With a new error variable de θθθ −=  and equation (3.4), 
(3.1) can be expressed as ),,(),,(1 ηηηεηηηφ &&&&&& +=− T

q Wfb ,                   (2.5) 
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where  is the optimal weight vector of the construct- 
ed neural network,  is the constructed basis 
function vector, and 

NW ℜ∈
Nℜ∈⋅)(φ

)(⋅ε  is the network’s reconstruction 
error. In [6-8], authors gave some practical selection methods 
of the basis function vectors according to the physical 
properties of the target plants. 

Consider the Lyapunov function candidate as 
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The optimal weight vector W  in (2.5) is an “artificial” 
quantity required only for analytical purposes. Typically,  
is chosen as the value of W  that minimizes

W
' )(⋅ε  for all 

Ω∈ηηη &&&,, , where  is a compact region, i.e., [8] 6ℜ⊂Ω

Using (3.5), and similar to the expansion procedure in 
Appendix, the derivative of equation (8) can be expressed as 
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Step 2 We make the following assumption on the network’s 
reconstruction error Define another new error variable , where  dq qqe −= dq
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Proof: Consider the following Lyapunov function candidate is a stabilizing function for the second equation in (2.2), then 
we the following expression 
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Differentiating (3.18) and substituting (3.16) and (3.17) into it, 
we have 

Similar to the previous expansion, select the stabilizing 
function  as dq
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where  is a certain design parameter. 0>k2
Consider the following Lyapunov function candidate 
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Using (3.7)~(3.9), the derivative of (3.10) can be expressed as 
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Step 3 
Here we define the constants  as 5,4,3, =iLiConsider the final equation of (2.2) with dq qqe −= , we 

have 
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Then, combining with (3.11), (3.19) can be rewritten as 

Using Assumption 2, above equation can be rewritten as 
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Using equation (2.5), above equation can be rewritten as 
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From (3.21) we have We choose the control law as 
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where 3λ  and 3ρ  are positive constants defined by 
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Ŵ W 43
ˆ,ˆ LL

32 ,

5L̂
43 , LL 5L

σσ  are certain strictly 
positive definite design parameters. 

(3.23) 
25

3
03524123 ))(2/(: ∑

=
−+++=

i
iii LLLLL ακσκσκσρ  

Substituting (3.15) into (3.14), we have 
)()( 020 WWWW T −Γ−+ .                    (3.24) 

.)/tanh(ˆˆ2/1
)/tanh(ˆˆ

1
353

243
1

εσ
σφφ θ

+−⋅−−

⋅−−−−=
−

−

dqq

dq
T

q
T

q

qbeLeL
qeLWeekWeb

&

&&
  (3.16) where max )(⋅λ  denotes the maximum singular value of the 

given matrix. 
If we let 333 /: λρµ = , then (3.22) satisfies 

Theorem: Consider the autonomous diving model of AUV 
expressed as (2.2) with Assumption 1~3. If we take the control 
laws as (3.4), (3.9) and (3.15), and the parameter adaptation 
laws are chosen as (3.3) and 
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that the desired trajectory is bound, we can conclude that z  
is bound also. Further, from (3.4) and (3.9), it is obvious that 
the stabilizing functions are bound, from which we can know 
that θ  and  are bound too. Consequently, all signals in 
the closed-loop system are guaranteed to be UUB.         
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Remark 2: In many practical applications, given a control 
plant, the constructed neural network’s optimal weight vector 

 and the bounding parameter  may not be 
completely unknown. Instead, we may have rough estimations 
of them through off-line identification or other useful schemes. 
In this case, the design parameters W  and 

W 5,,1, L=iLi

0 5,,1,0 L=iiL  

where 5,4,3,, =iii αγ  are certain strictly positive definite 
weghting factors,  and W  are certain design 
parameters, and  are strictly positive definite matrix. 
Then, all the signals in the closed-loop system are guaranteed 
to be UUB. 
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are considered as the initial estimation values of W  and 
. From (3.25), we can see that the accurate initial 

estimations of these parameters may results in smaller tracking 
error, respectively. 
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Remark 3: From (3.25), we can see that large  or small ik
 may result in smaller tracking error. However, 

increasing i  may cause certain high-gain control problems 
and the small values of iσ  could result in certain infinite 
frequency efforts. Therefore, these parameters should be 
chosen carefully in practice. 

Remark 4: Design parameters 5,,1, L=iiα  present certain 
trade-off between the tracking performance and the robustness 
of the proposed control scheme. In particular, if the basis 
function vectors ),,( ηηηφ &&&

0=i

 satisfy the persistency excitation 
conditions, then α  could result in the exact estimation 
of . However, the persistency excitation conditions are 
hard to be satisfied in many practical applications, and 

 could keep the parameter estimations from being 
divergent. 

4. SIMULATION STUDIES 

 The proposed robust NN controller is applied to the 
autonomous diving control of an AUV. 6 DOF dynamical 
equation of REMUS AUV [15] is employed in this simulation 
studies. 

In general, exogenous input terms were seldom considered 
in the control problem of the underwater vehicles, even if they 
were considered, only known bound terms were handled [13, 
14]. To discuss the advantage of the presented control scheme, 
here we consider the exogenous input term  in (2.2) as: 

, which is unbound and assume to be unknown.  
zf∆

z
The basis function vector of the constructed neural network 

is as following 
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where . For more details on 
the construction of neural network, refer to [16]. 

T]coscossin[sin θφθφ

The desired trajectory for this simulation is taken as 
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The constant forward speed  is taken as , 
and other parameters used in this simulation are taken as 
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The simulation results are depicted in Fig 1~4. In the 
process of simulation, we set both the rudder angle and pitch 
fin angle as zeroes. And from Fig 2, we can see that the 
vehicle turns to left by approximately 6degrees/second rate 
while keeping constant forward speed (1 ). This kind 
of phenomenon is caused by the characteristic of REMUS 
model [15]. Fig 3 showes that the constructed neural network 
has a certain approximation capacity for the given nonlinear 
uncertainty, and as discussed in section 3, Fig 4 showes that 
the network’s weights estimation values do not divergence 
under the adaptation law (3.17). In general, constant forward 
speed motion of vehicles does not cause all the nonlinear 
dynamical terms to be exciting, in other words, the persistency 
excitation conditions are hard to be satisfied in the constant 

sm /54.

 
(a) Vehicle’s velocities in body-frame 

 
(b) Vehicle’s Euler angles in earth-frame 

Fig. 1 Vehicle’s motion in the simulation 

 

Fig. 2 Tracking error in depth, pitch and pitch angle rate 

 

Fig. 3 NN’s approximation capacity 
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Here we need the following Lemma. 

Lemma A.1. The following inequality holds for any 0>σ  
and for any ℜ∈ze  
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Using Lemma A.1, (A.3) can be rewritten as Fig .4 NN’s weights estimation values 
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forward speed motion of underwater vehicles. If the 
constructed basis function vector ),,( ηηηφ &&&  does not satisfy 
the persistency excitation condition, then we should select the 
design parameter 0)( 2min >Γλ  such that the network’s 
weights estimations to be bound. Fig 2 showes the tracking 
errors of ddz θ,  and q  respectively, from which we can 
conclude that the proposed control scheme can get certain 
satisfactory performance under the relaxed assumptions on the 
nonlinear uncertainties. 

d

κσ)( 31421 ccccc ++ .                          (A.4) 

In above expansion, we use the assumption that the desired 
trajectory is in a bounded domain, such that . 0,|| 4 ≥≤ tczd

L : ccL =
5. CONCLUSIONS 

Here we define the constants  and  as: 1L 2 211 , 
314212 : cccccL += . Then, (A.4) can be rewritten as This paper presents a robust NN controller for autonomous 

diving control of an AUV. The exogenous input term of the 
vehicle’s dynamics is assumed to be unbound, although it still 
satisfies certain restricting condition, and the gain function of 
control is assumed to be unknown with known sign. Under 
these two relaxed wild assumptions, presented robust NN 
control scheme can guarantee that all the signals in the 
closed-loop system satisfy to be UUB. Some practical features 
of the proposed control law are also discussed. 
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Substituting the parameters’ update laws (5) into above 
equation, then we can get 
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APPENDIX 

From (A.6) we have 
Proof of Lemma. Substituting (4) into (3) yields 
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where 1λ  and 1ρ  are positive constants defined by 

Consider the Lyapunov function candidate as 
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Differentiating (A.2) and substituting (A.1) into it yields If we let 111 /: λρµ = , then (A.7) satisfies 
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Therefore 21
~,~, LLez

dz ze
 are all satisfied to be UUB. Further, 

since z += , combined with the assumption that the 
desired trajectory is bound, we can conclude that z  is bound 
also. Consequently, all signals in the closed-loop system are 
guaranteed to be UUB.                              
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