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Abstract: In general, the dynamics of autonomous underwater vehicles(AUVs) are highly nonlinear and time-varying, and the
hydrodynamic coefficients of vehicles are hard to estimate accurately because of the variations of these coefficients with different
navigation conditions. For this reason, in this paper, the control gain function is assumed to be unknown and the exogenous input
term is assumed to be unbounded, although it still satisfies certain restrict condition. And these two kinds of wild assumptions have
been seldom handled simultaneously in one system because of the difficulty of stability analysis. Under the above two relaxed
assumptions, a robust neural network control scheme is presented for autonomous diving control of an AUV, and can guarantee
that all the signals in the closed-loop system are UUB (uniformly ultimately bounded). Some practical features of the proposed

control law are also discussed.
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1. INTRODUCTION

In recent two decades, robust adaptive control has become a
powerful methodology in the control problem of nonlinear
uncertain systems, and several correspondent control methods
have been developed. By using the adaptive backstepping
design procedure, Kanellakopoulos et al. [1] have presented a
systematic design of globally stable and asymptotically
tracking adaptive controllers for a class of nonlinear systems
transformable to a parametric strict-feedback form. The over-
parameterization problem was soon overcome by Krstic ef al.
[2] by introducing the concept of tuning function. Krstic et al.
[3] also introduced the nonlinear damping to improve the
transient performance of the control system. In these design
procedures, the only handled uncertainties were that could be
linearly parameterized by unknown constant parameters.

Due to the approximation capacities of neural networks for
nonlinear mappings [4,5] and their learning characteristics,
there have been a considerable interests in exploring the
applications of neural networks to the control of nonlinear
uncertain systems [6-11]. The main characteristic of the neural
network adaptive control scheme is just to approximate the
smooth uncertainties of the systems using neural networks,
and this can relax the restrict conditions in the previous
adaptive control scheme where the uncertainties were assumed
to be linearly parameterized. For the remained uncertainties,
such as exogenous inputs and neural networks’ reconstruction
errors, there are various wild assumptions on them to progress
the stability analysis. In [6,9], exogenous input terms were
assumed to be bounded by known constants, and in [7,8,10],
they were bounded by unknown constants, and they also
assumed to be bounded by known function [11]. Recently,
there were another kinds of various wild assumptions on the
control gain functions of NN adaptive control scheme. In [7,8],
they were assumed to be known, and in [6,11], they were
assumed to be unknown and approximated by neural networks,
in [9], the control gain function was assumed to be bounded
by known functions.

In recent two decades, underwater robotic vehicles (URVs)
have become an intense area of oceanic research because of
their emerging applications. However, unfortunately, URVs’
dynamics are highly nonlinear and time-varying, and the
hydrodynamic coefficients of vehicles are difficult to be
identified exactly in priori because of the variations of these
coefficients with the vehicle’s different navigation conditions.
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For this reason, in general, URVs’ dynamics often include
unknown exogenous input terms, and the control gain
functions also could not be known exactly. In this paper, the
exogenous input term of the AUV’s dynamics is assumed to be
unbounded, although it still satisfies certain restricting
condition - Lipschitz condition with unknown Lipschitz
constant. And the gain function of control is assumed to be
unknown with known sign. Under these two relaxed wild
assumptions, presented robust NN control scheme can
guarantee that all the signals in the closed-loop system satisfy
to be UUB. Some practical features of the proposed control
law are also discussed.

2. PROBLEM STATEMENTS

The dynamic behaviour of an AUV can be described in
common way [13] through a 6DOF nonlinear equation

2.1

where 7 =[x,7,2,4,0,w]" is the position and orientation
vector, M(y)eR™° is inertia matrix (including added mass),
C,(n,7) e R is matrix of Coriolis, centripetal and damping
term, g(7)eR°® is gravitational forces and moments vector,
d denotes the exogenous input vector, and 7 is the input
torque vector. Further, we define 7 =[u,v,w, p,q,r]" be the
velocity and angular rate vector.

The diving equations of the AUV should include the heave
velocity w, the angular velocity in pitch ¢, the pitch angle
6, the depth z and the stern plane deflection and/or thrust
force of the propellers. Restricting the vehicle in the constant
forward motion and, for simplicity, assume that the heave
velocity during diving is small and negligible. This is quite
realistic since most small underwater vehicles move slowly in
the vertical direction. Further, in general, underwater vehicles
are designed to have symmetric structures and it is reasonable
to assume that the body fixed coordinate is located at the
center of gravity with the gravity force equal to the buoyancy
force of the vehicle. Consequently, the pitch and depth motion
of the vehicle during diving can be expressed as following,
which is a certain modified expression from [13,14]

M@+ Cp (i + g +d =7,

z=-u,0+4f,
f=q, (2.2)
q=f,+bz,,
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where u, is a known constant forward speed, Af, denotes
the uncertainty of the vehicle, f, and b are defined as
.fq =6,(M,Cp.g) , b=¢,(M) with () and J,()
smooth functions.

Due to the highly nonlinear dynamics of URVs and the
unpredictable environments of the vehicles, in the most
applications of AUVs, it is hard to determine the exact values
of M,C, and g in the equation (2.1) in priori. For this
reason, we make the following assumptions on equation (2.2).

Assumption 1: Exogenous input term Af, satisfies that
Af. =A-{,(z) , where |Al<c¢, and ¢, is an unknown
constant. Further, unknown function {,(z) satisfies certain
Lipschitz condition with unknown Lipschitz constant c, ,
such that |,(2)[<c, | z|+c,, where ¢, is also an unknown
constant.

Assumption 2: f, and b are smooth unknown functions,
and b is known sign and nonzero. Without any loss of
generality, we assume that b>c¢, >0 with ¢, unknown
constant. Further, the derivative of 57" is assumed to be
bounded by unknown constant ¢, suchthat d(b™')/dt<c,.

Remark 1: In general, most of URVs are designed to move
slowly in the deepsea environment. In this case, the control
gain function b varies slowly, and this make the Assumption
2 be reasonable.

Using above Assumption 2, the final equation of (2.2) can
be rewritten as
b"q:b’lfq —7,. (2.3)
Here we want to approximate the first terms of the right
sides of the above equation using neural network. According
to Assumption 2, the smooth term b7'f , can be written in
the parametric form [8]
b f, =W (,1.7) (2.4)
where W R is a constant vector and ¢ (77,7,7) € R’
is a basis function vector of »~' f, , - If the basis of a function
is exactly known, then the functional approximation problem
can be converted to the well-known parameter estimation
problem. However, in practice, we could not exactly know the
basis of an unknown function in priori, and there always
remains network’s reconstruction error. Consequently, (2.4)
can be expressed as

b f, =W (0. 71,11) + (.71, 77) (2.5)
where W e R" is the optimal weight vector of the construct-
ed neural network, ¢()eR" is the constructed basis
function vector, and &(-) is the network’s reconstruction
error. In [6-8], authors gave some practical selection methods
of the basis function vectors according to the physical
properties of the target plants.

The optimal weight vector W in (2.5) is an “artificial”
quantity required only for analytical purposes. Typically, W
is chosen as the value of W' that minimizes &(-) for all
n,n,7 € Q, where Qc R® isa compact region, i.e., [8]

w sup | b7 f, =W $(,17.7) I} : (2.6)

17,17, 7€Q

= arg min{
Pt

eR

We make the following assumption on the network’s
reconstruction error
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Assumption 3: On a certain compact region Q  R°*

le(m.n.i)I€e, 17,71 €€, Q.7

where ¢, >0 is an unknown constant.

3. ROBUST NN CONTROLLER DESIGN

The obgective of the autonomous diving control of an AUV
can be expressed as: consider the nonlinear uncertain system
(2.2) with a given desired trajectory z,, design a control
input torque 7, such that the tracking error e, =z—z, and
all other signals in the closed-loop are guaranteed to be UUB.

Step 1

First equation of (2.2) can be rewritten in the tracking error
form as following

3.1)

Lemma: Consider the dynamical equation (3.1) with
Assumption 1, where pitch angle 6 considered as control
input. If the control law is chosen as

6. =—2, —u,0+Af..

0=u,'[-z, +ke, +Le, +L,-tanh(e, /)], (3.2)

where k, >0 is a design parameter, il and iz are the
estimations of certain unknown constants L, and L,, which
will be defined later, o, is a certain strictly positive definite
design parameter, and tanh(-) denotes hyperbolic function.
And the parameter update laws are chosen as

l?l = 71[6;2 +al(£l —-Ly)l

: ) (33)
L, =y,le. -tanh(e, /0,) + a, (L, — Ly)],

where y,,7,,@,, @, are certain strictly positive definite

weghting factors, and L,,, L,, are certain design parameters.

Then, all the signals in the closed-loop system are guaranteed

to be UUB.

Proof: See Appendix.

According to Lemma, we choose the stabilizing function
6, as following
0, =u,'[-z, +ke. +Le, +L, -tanh(e. / 5,)]. (3.4)

With a new error variable e, =@ -6, and equation (3.4),
(3.1) can be expressed as

ézz—z'd—uo(eg+9:,)+AfAZ 3.5)
=—ke, —use, —Le, —L,z, -tanh(e, /o) +A-{,(2).
Consider the Lyapunov function candidate as
V=1/2e+y 'L’ +y,"'L,). (3.6)

Using (3.5), and similar to the expansion procedure in
Appendix, the derivative of equation (8) can be expressed as
V. <—ke. —uye,e. —(a,/12)L, —(a,/2)L," + L,xo,

+(a, 12)(L, _L10)2 +(a,/2)(L, _L20)2~ (3.7)

Step 2

Define another new error variable e, =¢q—gq, , where ¢,
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is a stabilizing function for the second equation in (2.2), then
we the following expression
é(/:q_éd:eq"'qd_éd' (3.8)

Similar to the previous expansion, select the stabilizing
function ¢, as

q, =u.e, —k,e, +9d , 3.9)
where k, >0 isa certain design parameter.

Consider the following Lyapunov function candidate

V, =V, +1/2e,. (3.10)

Using (3.7)~(3.9), the derivative of (3.10) can be expressed as
V,<—ke.' —k,e, +eze, —(a /2)[:2 —(a, /2)[722 + L,x0,

+(a1 /2)(L1 _Llo)2 +(0‘2 /2)(L2 _L20)2~ (3~11)

Step 3

Consider the final equation of (2.2) with e, =g—gq,, we
have

e, =f, +br,—q,. (3.12)
Using Assumption 2, above equation can be rewritten as
b'e,=b"'f +1,-b"q,. (3.13)
Using equation (2.5), above equation can be rewritten as
ble, =W'¢+1,-b"'q, +¢. (3.14)
We choose the control law as
7, :—k3eq—eg—Vf/T¢—1/21:3eq (3.15)

~L,g, -tanh(e,g, /c,) - L; - tanh(e, / o)

where W is the estimation of W, £3,£4 and is are the
estimations of certain unknown constants L,, L, and L.,
which will be defined later, and o,, o, are certain strictly
positive definite design parameters.

Substituting (3.15) into (3.14), we have

b, =W'¢p—ke, —e,~W'$~L, tanh(e,qg,/o,)

“he, 5 (3.16)
—1/2Le, — L -tanh(e, / o5) —b"'q, +&.

Theorem: Consider the autonomous diving model of AUV
expressed as (2.2) with Assumption 1~3. If we take the control
laws as (3.4), (3.9) and (3.15), and the parameter adaptation
laws are chosen as (3.3) and

L} =r,[1/2e, +a,(L, — L)l

124 =7,le, - tanh(e, /04)+014(1:4 —%40)], (3.17)
L_5 =ysle,q, -tanh(q,e, /o) +as(L; — L)),
Lle, ¢ +T,(00 —W,)],

/4

where y,, «,, i =3,4,5 are certain strictly positive definite
weghting factors, L, j=3,4,5 and W, are certain design
parameters, and I,I, are strictly positive definite matrix.
Then, all the signals in the closed-loop system are guaranteed
to be UUB.
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Proof: Consider the following Lyapunov function candidate
~ ~ S ~
Vy=V,+1/2b7e  +1/20' T, W +1/23y, 'L . (3.18)
i=3

Differentiating (3.18) and substituting (3.16) and (3.17) into it,
we have
V,=V,+eb e, +1/2[d(b™)/ drle, +W'T,'W
5 ~ o~
+Zyi71L[Lf
i=3
<V, +eW'¢p—ke ~1/2Le, ~L,q,e, -tanh(g,e, /o))
—iseq -tanh(e, /0y)—b"'q,e, + e, + 1/2cseq2 —-e.e,
~ ~ 5 ~
+WITTW Yy L
i=3
<V, —ke,’ +1/2(c; —Ly)e,’ +c, |e, |- Le, - tanh(e, / 7,)

a0 . . .
+ec, | q9.€, | _L4qdeq 'tanh(Q4eq lo,) - €,€y

+VI7TF2(W—WO)+ia‘,L~‘.(LA[ L. (3.19)
Here we define the constants L,, i =3,4,5 as
Ly=c, L,=c,", L, =c,. (3.20)
Then, combining with (3.11), (3.19) can be rewritten as
V, <-ke’ -ke,’ —ke, ~Sa, /DL -WT,
i

+ L,xo, + L,ko, + Liko, + ZS;(O(,. /2)(L, - Lm)2

+W-Ww)'T,W -W,). 7 (321
From (3.21) we have
V, <-AV, + ps, (3.22)

where A, and p, are positive constants defined by

Ay = min - minfk, | min {1,712 /(A (0) 2 ()}
(3.23)

5 2

p, =L,xko, + L,xko, + Liko, + Y (e, 12)(L, — L))
i=3

(W W) T,(W - W,). (3.24)

where A, () denotes the maximum singular value of the
given matrix.

If welet u, = p,/A,,then (3.22) satisfies
0<V,(t) < pt, +[V,(0) — g, Je ™. (3.25)
Therefore e_, e,, e, and Zl,izl,---,S are all satisfied to
be UUB. Since z=e, +z,, combined with the assumption
that the desired trajectory is bound, we can conclude that z
is bound also. Further, from (3.4) and (3.9), it is obvious that
the stabilizing functions are bound, from which we can know
that & and ¢ are bound too. Consequently, all signals in
the closed-loop system are guaranteed to be UUB. O

Remark 2: In many practical applications, given a control
plant, the constructed neural network’s optimal weight vector
W and the bounding parameter L,,i=1,---,5 may not be
completely unknown. Instead, we may have rough estimations
of them through oft-line identification or other useful schemes.
In this case, the design parameters W, and L,,i=1,---,5
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are considered as the initial estimation values of W and
L,,i=1,---,5. From (3.25), we can see that the accurate initial
estimations of these parameters may results in smaller tracking
error, respectively.

Remark 3: From (3.25), we can see that large &, or small
o,,i=12,3 may result in smaller tracking error. However,
increasing k, may cause certain high-gain control problems
and the small values of o, could result in certain infinite
frequency efforts. Therefore, these parameters should be
chosen carefully in practice.

Remark 4: Design parameters «,,i=1,---,5 present certain
trade-off between the tracking performance and the robustness
of the proposed control scheme. In particular, if the basis
function vectors ¢(7,7,77) satisfy the persistency excitation
conditions, then «, =0 could result in the exact estimation
of W . However, the persistency excitation conditions are
hard to be satisfied in many practical applications, and
a, >0 could keep the parameter estimations from being
divergent.

4. SIMULATION STUDIES

The proposed robust NN controller is applied to the
autonomous diving control of an AUV. 6 DOF dynamical
equation of REMUS AUV [15] is employed in this simulation
studies.

In general, exogenous input terms were seldom considered
in the control problem of the underwater vehicles, even if they
were considered, only known bound terms were handled [13,
14]. To discuss the advantage of the presented control scheme,
here we consider the exogenous input term Af, in (2.2) as:
Af. =0.01z , which is unbound and assume to be unknown.

The basis function vector of the constructed neural network
is as following
ga.ni)=0i" 7" en" G (GG, 4.1
where G =[sing sin@ cos¢ cos@]” . For more details on
the construction of neural network, refer to [16].

The desired trajectory for this simulation is taken as

z, =10+ 3sin(0.2¢), z, =0.6c0s(0.2¢). 4.2)

The constant forward speed u, is taken as u, =1.54m/s,
and other parameters used in this simulation are taken as

k, =20, k, =3.0, k, =2.0,
o, =0,=0,=1.0,
a, =0.005, y,=0.02, L, =0,

(4.3)
i=1-5.

The simulation results are depicted in Fig 1~4. In the
process of simulation, we set both the rudder angle and pitch
fin angle as zeroes. And from Fig 2, we can see that the
vehicle turns to left by approximately 6degrees/second rate
while keeping constant forward speed (1.54m/s ). This kind
of phenomenon is caused by the characteristic of REMUS
model [15]. Fig 3 showes that the constructed neural network
has a certain approximation capacity for the given nonlinear
uncertainty, and as discussed in section 3, Fig 4 showes that
the network’s weights estimation values do not divergence
under the adaptation law (3.17). In general, constant forward
speed motion of vehicles does not cause all the nonlinear
dynamical terms to be exciting, in other words, the persistency
excitation conditions are hard to be satisfied in the constant
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forward speed motion of underwater vehicles. If the
constructed basis function vector ¢(7,7,77) does not satisfy
the persistency excitation condition, then we should select the
design parameter A, (I',)>0 such that the network’s
weights estimations to be bound. Fig 2 showes the tracking
errors of z,, 8, and g, respectively, from which we can
conclude that the proposed control scheme can get certain
satisfactory performance under the relaxed assumptions on the
nonlinear uncertainties.

5. CONCLUSIONS

This paper presents a robust NN controller for autonomous
diving control of an AUV. The exogenous input term of the
vehicle’s dynamics is assumed to be unbound, although it still
satisfies certain restricting condition, and the gain function of
control is assumed to be unknown with known sign. Under
these two relaxed wild assumptions, presented robust NN
control scheme can guarantee that all the signals in the
closed-loop system satisfy to be UUB. Some practical features
of the proposed control law are also discussed.

6. ACKNOWLEDGMENT
This work is supported in part by the Ministry of Mari-time

Affairs and Fisheries and the Ministry of Science and
Technology, Korea.

APPENDIX

Proof of Lemma. Substituting (4) into (3) yields

¢. =—ke, —Le —L,z, tanh(e, /o) +A-(2). (A1)
Consider the Lyapunov function candidate as
Vi=1/2(e] +7, 'L 4y, LY. (A2)

Differentiating (A.2) and substituting (A.1) into it yields
Vl =e.ec, +71712121 +7zilzzzz
=—ke.’ —ilezz - I:Ze_, -tanh(e, /o) +e,A-J,(2)
+7|7121Z1 +727]Z2Z2 .
< ke’ - ile:2 - ]:zez -tanh(e, /o) + yl"ZIZI

71~~
+7, LL,+le, ¢ (e, | z]+¢;)

111

< ke’ —ile:2 —]:262 -tanh(e, /o) + ;/I"ZIZI

+7271Z2Z2+‘e; lci(c, le. |+e, 1z, | +¢s). (A.3)

Here we need the following Lemma.

Lemma A.1. The following inequality holds for any o >0
and forany e, € R

0<|e, |—e, -tanh(e, /o) < kO

—(x+1)

where x is a constant that satisfies x =e

Proof: Refer to [8].

Using Lemma A.1, (A.3) can be rewritten as

V,<—ke. —ilezz —izez - tanh(e, /a)+y['ZIZ +;/271Z2L2
tece (e, |z, |+ec) e, | .
< —ke.’ +(cc, —]:1 Ye.? —izez -tanh(e, /o) + ;/I’IZIZI
+ ;/{'Zzlj2 +(c,c,cy +¢ic;y)|e, -tanh(e, / o) + kO]
=—ke.’ +(c,c, —L"l)ez2 + y;lZlZl + ;/Z’ILNZLL2
+[(c,c ey +¢i¢5) —1:2 le, - tanh(e, / o)

+(c,c, e, +c,C5)K0 . (A4)

In above expansion, we use the assumption that the desired
trajectory is in a bounded domain, such that |z, |[<c,,#20.

Here we define the constants L, and L, as: L, =cc,,
L, =c,c,c, +c,c, . Then, (A.4) can be rewritten as

V,<—ke.' +L,ko+ Ijle_,2 + Zzez -tanh(e, / o)

) (A.5)
+}/1 LIL1+7/2 LZLZ'

Substituting the parameters’ update laws (5) into above
equation, then we can get

Vl < —klez2 +L2m+a121 (1:l —LIO)+0:2Z2(1:2 -L,)
= —klez2 +L2KG—0(1Z12 +a,(L, —L”,)ZI —aZZf
+0l2(L2 _Lzo)zz - -
<—ke’+Lixo—a L’ +(a /2L’ +(a, /2)L, —L,)*
_0‘2222 +(a, /2)Z22 +(a, /12)(L, = Ly)?
= —fke." +(a, /2L +(a,/2)L," ]+ Lxo

+(a, 12)(L, —L,y)" +(a, /2L, — L,)". (A.6)
From (A.6) we have
V<=V, +p,, (A7)
where A, and p, are positive constants defined by
A, =min{2k,, 1/(a,y,), 1/(a2}2/2)}, i (AS)
p=Lxo+(a, /2)(L,—L,) +(a,/2)(L,—L,)".
If welet u, = p,/A,,then (A.7) satisfies
0<V,(1) < 1, +[V,(0)— g1 e ™. (A9)

Therefore e_, Zl, Z2 are all satisfied to be UUB. Further,
since z=e_ +z,, combined with the assumption that the
desired trajectory is bound, we can conclude that z is bound
also. Consequently, all signals in the closed-loop system are
guaranteed to be UUB. O
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