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Abstract : In this study, an adaptive control scheme with a pre-specified ∞  property is proposed for the 

tracking control of linear induction motor (LIM) drive system. Under the influence of uncertainties and 

external disturbances, by using nonlinear decoupling and parameter tuner, the robust performance control 

problem is formulated as a nonlinear ∞  problem and solved by a quadratic storage function. This new 

design method is able to track the step and several periodic commands with improved performance in 

face of parameter perturbations and external disturbances. Simulation and experimental results are 

provided to demonstrate the effectiveness of the proposed adaptive ∞  controller.
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1. INTRODUCTION
  

  The LIM has many advantages such as simple 

structure, alleviation of gear between motor and the 

motion devices, reduction of mechanical losses and 

the size of motion devices, high-speed operation, 

silence, high-starting thrust force, etc.[1]. Because 

of the advantages mentioned above, the LIM  has 

been used widely in the field of industrial 

processes and transportation applications [2]. 

However, there is strong interaction between the 

machine process and the direct drive of LIM. 

Therefore, the drive control system must provide 

high tracking performance and high dynamic 

stiffness.

  The driving principles of the LIM are similar to 

the traditional rotary induction motor (RIM), but its 

control characteristics are more complicated than 

the RIM, therefore, its mathematical model is 

difficult to derive completely. Moreover, the 

dynamic model of the LIM can be modified from 

the dynamic model of the RIM at certain low 

speeds since the LIM can be visualised to unroll a 

rotary induction motor. Thus, many decoupled 

control techniques in RIM can be adopted to 

decouple the dynamics of the trust force and the 

flux amplitude of the LIM [3]. The motivation of 

this study is to design a suitable control scheme to 

confront the uncertainties existing in the incomplete 

dynamic model of the LIM.  

  During the past decade, the ∞  control strategy 

has been widely celebrated for its robustness in 

counteracting uncertainty perturbations and external 

disturbances. consequently, some applications of 

this approach to various plants such as DC motors 

[4], switching converters [5] and aircraft [6] have 

been published. The main point of the ∞  control 

is to synthesize a feedback law that renders the 

closed-loop system to satisfy a prescribed ∞
-norm constraint which representing desired 

stability or tracking requirements. An ∞  controller 

design with adaptive mechanism is developed for a 

nonlinear system under both parameter 

uncertainties and external load disturbance. 

  Since adaptive control systems are inherently 

nonlinear, the derivation of the proposed controller 

is relied on nonlinear ∞  control theory [7]. By 

choosing a quadratic storage function, the solution 

of the adaptive ∞  problem has a simple structure 

and is suitable for digital realization. 

  In this study, an adaptive ∞  controller is 

designed to control the position of a mover of the 

LIM for the tracking of periodic step, sinusoidal 

references. The considered uncertainties are 

variation of mover mass, friction coefficient and 

unknown external disturbance force, which are the 

major concerns in motion control applications. 

2. NONLINEAR DECOUPLE CONTROL
  

  The dynamic model of the LIM is modified from 

the traditional model of a 3-phase, Y-connected 

induction motor in a d-q stationary reference frame 

and can be described by the following differential 

equations [2].

   





 


                     

      


 


                   (1)

    





 




       


 


                     (2)
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  


 


 


                    (3)

  


 


 


                    (4)

                     (5)

where      
        

and

    = primary resistance per phase [Ω]

    = secondary resistance per phase [Ω]

    = magnetising inductance per phase [H]

    = primary inductance per phase [H]

    = secondary inductance per phase [H]

    = mover linear velocity [m/sec]

   = -axis secondary flux [Wb]

   = -axis secondary flux [Wb]

   = -axis primary current [A]

   = -axis primary current [A]

   = -axis primary voltage [V]

   = -axis primary voltage [V]

    = secondary time constant

    = leakage coefficient

    = electromagnetic force [N]

    = force constant [N/V]

   = load disturbance [N]

   = total mass of the moving element [kg]

   = viscous friction coefficient [kg/sec]

    = pole pitch [m]

   = number of pole pairs 

  The secondary flux amplitude is defined as

   
 

  
                           (6)

and using Eq.(3) and Eq.(4), the time derivative of 

  can be derived as follows:

  




   
                   (7)

From Eq.(5), the LIM motion dynamics can be 

expressed as

    




  


              (8)

  In the LIM dynamics described by Eq.(7) and (8), 

 and  are the control inputs, and and  are 

the system outputs. Thus, the LIM dynamic is a 

coupled system. Since there are no direct relations 

between the outputs and inputs, it is difficult to 

design the control inputs  and  so that the 

system outputs   and  can track the desired 

trajectories accurately. Therefore, the nonlinear 

state feedback theory is used to eliminate this 

coupling relationship between the control inputs 

  and the system outputs  ,  to simplify the 

design of the position controller. Two new control 

inputs  and  are chosen as follows

  



 



 

 


 


 

 




 




                  (9)

From Eq.(9), the feedback linearization controller 

can be derived as follows:

  



 




 



 


 


 

 




 




                    (10)

Substituting Eq.(10) into Eq.(7) and Eq.(8), the 

decoupled equations can be obtained as follows

     





                          (11)

     




 


                     (12)

  Thus, the new inputs  and  can be used to 

control the secondary flux amplitude and mover 

position, respectively. The nonlinear decoupled LIM 

drive system consists of a ramp-comparison 

current-controlled pulse-width modulated (PWM) 

voltage source inverter (VSI), a feedback 

linearization controller, two co-ordinate translators, 

a speed-control loop and a position-control loop, 

The LIM used in this drive system is a 3-phase 

Y-connected tow-pole 3[kW], 60[Hz], 220[V] type 

as depicted at Fig.1. 

Fig.1 Structure of an experimental LIM

  The detailed parameters of the LIM are

    2.35[A], = 5.3685[Ω],   

  =3.5315[Ω],  = 27[mm],                (13)

    = 24.19[mH],     = 28.46[mH]

where  is the flux current command. By use of 

the nonlinear decoupled technique and with the 

fact that the electrical time constant is much 

smaller than the mechanical time constant, the LIM 

drive system can be reasonably represented by the 

control system block diagram shown in Fig.2, in 

which
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                                        (14)

   





                        (15)

Fig.2 Block diagram of LIM control system

where  is the thrust command voltage. The curve 

fitting technique based on step response is applied 

to fine the drive model off-line at the nominal case 

(  ). The results are (on a scale of 

1.5915[m/sec/V]) 

   148.35[N/V], =12.965, = 0.226,

   = 2.79[kg] = 4.4245[N․sec/V],           (16)

   = 36.0455[kg/sec] = 57.3664[N/V]        

The '


' symbol represents the system parameters 
in the nominal condition.

3. ADAPTIVE ∞ CONTROL DESIGN

  

  To counteract the effect of parameter variations 

and external disturbances, an adaptive tracking 

control scheme with a guaranteed ∞  performance 

is proposed. It consists of finding a static or 

dynamic feedback controller such that  ∞-norm 

of the closed-loop transfer function is less than a 

given positive number under the constraint that the 

closed-loop system is internally stable. To apply 

this method, the LIM position tracking problem 

must be formulated into an equivalent ∞  control 

problem in which robust performance requirements 

in terms of ∞-norm constraints on the tracking 

error dynamics. 

  By rewriting Eq.(12), the dynamic equation of the 

LIM drive system can be put into the following 

form.

    
  


 


                       (17)

where  is the mover position of the LIM. Define 

the tracking error vector as follows

      

   


                  (18)

where   is the tracking error of mover position, 

and  and  represent the desired mover position 

and speed, respectively. Since the plant parameters 

 and  are uncertain,  and  are denoted as 

their estimated, and the corresponding matrices 

      and    

 are defined. In oder to 

obtain the tracking error dynamic for arbitrary input 

command, a preliminary feed-forward term.

   


                  (19)

is first applied, where       with  and  

being any positive constants, and  is the 

outer-loop control to be further specified later. By 

substituting Eq.(19) into Eq.(17), it can be obtained 

that

    

                  (20)

where        ,  

 . Thus, 

using the definition of Eq.(18), Eq.(20) can be 

rewritten as

    

  


                       (21)

The error dynamics equation (21) can be described 

by the state-space representation

  



 








 


 

 




 






 









 





 



 



     (22)

where     
 and  . In order to achieve 

a zero steady-state error, an integral action

   




  




                          (23)

is introduced and together with Eq.(22), the 

augmented error dynamics can be expressed as

    



                   (24)

where  












,










  
  
  

, 












,

















. 

Let the penalty variable  be chosen as

     with  


 


  

  
,  



 




        (25)

where  and  are weighting constants, which have 

to be determined so that the desired performance 

specifications are achieved. Now, for the 

augmented error Eq.(24), the objective is to find a 

parameter-tunable controller of the form as
  ,   so that the resulting 

closed-loop system

    

   

              (26)

  
                                    (27)
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                                  (28)

is stable and the ∞-norm constraint

 

  


∞

 ≤ 


∞

                  (29)

is satisfied for as small a value of  as possible. 

Moreover, when    the asymptotic tracking is 

achieved, i.e. lim
→∞

   . The value of  in 

Eq.(29) stands for a measure of the effect of the 

disturbance  on the penalty variable . From the 

definition of  in Eq.(29), it is easy to realize that 

a smaller value of  will result in better tracking 

performance. As a summary, the resulting adaptive 

∞  control problem subject to the plant in Eq.(24) 

is depicted in Fig.3.

Fig.3 Adaptive ∞  control problem

  In adaptive systems, under the influence of 

unmodelled dynamics or external disturbances the 

parameter-drifting phenomenon may occur. A 

common method to eliminate this phenomenon is 

to project the parameter estimates into a bounded 

set. Hence it is assumed that the real parameter 

vector  falls into a known bounded cube . Let 
 and  denote the interior and boundary of the 

set , respectively. The symbol  represents the 

vector normal to  at . Since a projective action 

in the adaptive law will be used to confine the 

parameters in the set , it can then be easily 

checked that there exists a constant bounding 

matrix  such that, for all ∈, the following 

inequality holds.

  
 ≤                            (30)

Next, the nonlinear ∞  control theory is applied to 

derive the adaptive ∞  controller.

Theorem 1. Suppose that the Riccati inequality at 

given a positive constant  

   



 

≤       (31)

has a solution . Then the adaptive law 

    
,                   (32)

  
 








   ∈  ∈   ․ 
  ∈   ․           (33)

and control input 

   


                               (34)

can stabilize the closed-loop system in 

Eq.(26)~(28) and the ∞  tracking performance in 

Eq.(29) is also achieved.

Proof. Selecting the storage function to be

    

                        (35)

and taking its derivative with respect to time, one 

can obtain

    

 



                      (36)

Recall that     , the projective 

action in Eq.(33) ensures that

  
  

  







  ≤              (37)

Next, proceed to derive that the ∞  inequality (29) 

is achieved by using Eq.(30), (32), (34) and (37), 

and the completion of the squares in the form of 

inequality. 

   ≤ ∥ ∥ ∥ ∥    
                                              (38)

Choosing  as the one given in Eq.(34), and 

integrating the above inequality both sides from 0 

to  gives





  ≤ 





∥ ∥   
                                    (39)

  Since   , the asymptotic tracking when the 

disturbance  vanishes can be shown along the 

usual Lyapunov argument. Indeed, consider the 

storage function  in Eq.(35) as a Lyapunov 

function candidate. Note that for  , Eq.(38) 

becomes

   ≤    ≤                      (40)

This proves that the unforced closed-loop system 

is stable. Furthermore, from Lasalle's invariance 

principle [8] and the fact that      
, it is 

concluded that lim
→∞
    and this completes the 

proof. 
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4. SIMULATION AND EXPERIMENT
 

  To investigate the effectiveness of the proposed 

adaptive ∞  controller, four cases with parameter 

variations and external load disturbance are 

considered here :

  Case Ⅰ :           

  Case Ⅱ :  ×  ×   

  Case Ⅲ :          

  Case Ⅳ :  ×  ×     

where   will be applied at 5~15[sec] in CASE Ⅲ 

and CASE Ⅳ. Moreover, a 3rd-order transfer 

function of the following form is chosen as the 

reference model for the periodic step input as 


 


. In addition, the design 

parameters of the adaptive ∞  controller are given 

as    ,     ,     ,   ,    

and   . 

  Simulation was carried out using CEMTool and 

sampling interval are set to be 0.5[msec]. Fig.4~7 

represent the simulation results for CASE Ⅰ~Ⅳ 

and display the reference signal () vs mover 

position () and control effort (), respectively. 

Mover positions are very well track the reference 

signal at all cases, however, control efforts are all 

different according to the existence of parameter 

variations(,) and load disturbance(). Fig.8 and 

Fig.9 represent tracking error and estimation value 

of parameter variations in CASE Ⅳ, respectively, 

and its value are smaller or converge to constant 

values as time elapsed. Especially, tracking error 

will be zero due to the insertion of integral action 

 in Eq.(23).

  Experimental studies were performed to confirm 

the simulated results and carried out as Fig.10. The 

control algorithm are implemented by Turbo C 

language and DSP(TMS320C32) are used in digital 

realization. Fig.11 is the results of experiment with 

 . The results are almost same as of simulation 

except a minutely vibration due to the effect of 

external and measurement noise. The effects of 

parameter variations nearly do not exist due to the 

precisely settings of parameter  and . 

5. CONCLUSIONS
 

  This study has successfully demonstrated the 

design, stability analysis and implementation of an 

adaptive H∞ controller for the position control of 

the mover of an LIM drive system. The curve fitting 

technique and feedback linearization were used to 

decouple the thrust force and the flux amplitude of 

the LIM. By choosing a adequate quadratic storage 

function, a simple adaptive law in companion with 

a state feedback term has been theoretically shown 

to desired ∞  performance for the tracking of 

periodic command signals. Unlike usual ∞  control 

design, the control scheme presented here 

introduces a integral action to achieve perfect 

tracking of periodic commands. Experimental 

studies were performed to confirm the simulated 

results. 
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Fig.4 Simulation results for CASE Ⅰ

Fig.5 Simulation results for CASE Ⅱ

Fig.6 Simulation results for CASE Ⅲ

Fig.7 Simulation results for CASE Ⅳ

Fig.8 Tracking error for CASE Ⅳ

Fig.9 Estimation value of  and  for CASE Ⅳ

Fig.10 Hardware configuration for LIM drive system

Fig.11 Experimental results with 
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