• Title/Summary/Keyword: Robust $H_{\infty}$ Control

Search Result 424, Processing Time 0.031 seconds

A Study on a Sufficient Condition for Decoupling Control System Design (입력과 출력간의 비간섭 제어계 설계에 관한 연구)

  • Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.84-88
    • /
    • 1999
  • In this paper, systems described by state-space models are considered. For these systems, author studies the decoupling of linear systems and gives a sufficient condition for a system to be made feedback decouplable. Especially, the condition is given by LMI(Linear Matrix Inequality) form. Based on this condition, it is guaranteed that the system decoupling problem is achieved and the $H_{\infty}$ constraint is satisfied simultaneously. This result can be easily extended to the robust decoupling control system design problems.

  • PDF

A Study on the Sensorless Realization of Magnetic Levitation System (자기 부상계의 센서리스 실현에 관한 연구)

  • 김창화;정병건;양주호
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.195-203
    • /
    • 1998
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor because of little friction, no lubrication, no noise and so on. The magnetic levitation system need the feedback controller for the stabilization of system, and gap sensors are generally used to measure the gap. The use of sensor easily goes into troublesome caused by sensor failure discord between the measurement point and the control point etc. This paper presents the design of robust stabilizing contoller by $H_{\infty}$ control theory using the sensorless method proposed by authors in the magnetic levitation system. And we investigated both the validity of the designed controller and the usefulness of the sensorless magnetic levitation system through results of actual experiment.

  • PDF

Antenna Control System Using Step Tracking Algorithm with H$_{\infty}$ Controller

  • Cho, Chang-Ho;Lee, Sang-Hyo;Kwon, Tae-Yong;Lee, Cheol
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 2003
  • The outdoor antenna servo system is subject to has significant torque disturbances from wind pressures and gusts on the antenna structures, as well as bearing and aerodynamic frictions. This control system should provide a sharp directivity in spite of the environmental disturbances and internal uncertainties. Therefore, the implementation of a real-time controller is necessary for the precise generation of the reference signal and robust tracking performance. In this paper, the discrete-time controller for the quick tracking of a target communication satellite is designed by applying the sampled-data $H_{\infty}$ control theory along with the reference signal generated by an improved conventional step-tracking algorithm. The sampled-data $H_{\infty}$controller demonstrates superior robustness for the longer sampling period when compared with a simple PID controller.

Disturbance-Observer-Based Robust H Switching Tracking Control for Near Space Interceptor

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.153-162
    • /
    • 2014
  • A novel robust $H_{\infty}$ switching tracking control design method with disturbance observer is proposed for the near space interceptor (NSI) with aerodynamic fins and reaction jets. Initially, the flight envelop of the NSI is divided into small subregions, and a slow-fast loop polytopic linear parameter varying (LPV) model is proposed, to approximate the nonlinear dynamic of the NSI, based on the Jacobian linearization and Tensor-Product (T-P) model transformation approach. A disturbance observer is then constructed, to estimate the modeled disturbance. Subsequently, based on the descriptor system method, a robust switching controller is developed, to ensure that the closed-loop descriptor system is stable with a desired $H_{\infty}$ disturbance attenuation level. Furthermore, the outcome of the proposed switching tracking control problem is formulated as a set of linear matrix inequalities (LMIs). Finally, simulation results demonstrate the effectiveness of the proposed design method.

A Study on the Design of Adaptive $H_{\infty}$ sub INF Controller-Polynomial Approach (적응 $H_{\infty}$ 제어기의 설계에 관한 연구 - 다항식 접근방법)

  • Kim, Min-Chan;Park, Seung-Kyu;Kim, Tae-Won;Ahn, Ho-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.4
    • /
    • pp.129-136
    • /
    • 2002
  • This paper presents a $H_{\infty}$ robust controller with parameter estimation in polynomial approach. For good performance of a uncertain system, the parameters are estimated by RLS algorithm. The controller minimizes the sum of $H_{\infty}$ norm between sensitivity function and complementary sensitivity function by employing the Youla parameterization and polynomial approach at the same time. A numerical example and its simulation results are given to show the validity of the proposed controller.

Design of the multivariable hard nonlinear controller using QLQG/$H_{\infty}$ control (QLQG/$H_{\infty}$ 제어를 이용한 다변수 하드비선형 제어기 설계)

  • 한성익;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.81-84
    • /
    • 1996
  • We propose the robust nonlinear controller design methodology, the $H_{\infty}$ constrained quasi - linear quadratic Gaussian control (QLQG/ $H_{\infty}$), for the statistically-linearized multivariable system with hard nonlinearties such as Coulomb friction, deadzone, etc. The $H_{\infty}$ performance constraint is involved in the optimization process by replacing the covariance Lyapunov equation with the Riccati equation whose solution leads to an upper bound of the QLQG performance. Because of the system's nonlinearity, however, one equation among three Riccati equations contain the nonlinear correction terms that are very difficult to solve numerically. To treat this problem, we use simple algebraic techniques. With some analytic transformation for Riccati equations, the nonlinear correction terms can be so eliminated that the set of a linear controller to the different operating points are designed. Synthesizing these via inverse random input describing function (IRIDF) technique, the final nonlinear controller can be designed.

  • PDF

Robust observer-based $H_{\infty}$ control for singular systems (특이시스템의 강인 관측기 기반 $H_{\infty}$ 제어)

  • Kim, Jong-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.7-9
    • /
    • 2004
  • This paper provides an observer-based $H_{\infty}$ controller design method for singular systems with and without time-varying delay by just one LMI condition. The sufficient condition for the existence of controller and the controller design method are presented by perfect LMI (linear matrix inequality) approach. The design procedure involves solving an LMI. The observer-based $H_{\infty}$ controller in the existing results can be constructed from the coupled two or more conditions while the proposed controller design method can be obtained from an LMI condition, which can be solved efficiently by convex optimization. Since the obtained condition can be expressed as an LMI form, all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement and changes of variables. An example is given to illustrate the results.

  • PDF

A Robust Controller Design for the Position Control of a Spring-Mass System (탄성-질량시스템의 위치제어를 위한 강건 제어기 설계)

  • 박종우;이상철
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.41-49
    • /
    • 1999
  • In this paper, we design a controller using the $\mu$-synthesis method and apply it for the spring-mass system with noncollocated sensors and actuators. We assume that the values of the spring stiffness and load mass of the plant are uncertain. The plant is modeled with parametric uncertainty by using the state space equation, especially the descriptor form. The $H_\infty$ controller designed by the $\mu$-synthesis method is compared with the standard $H_\infty$ controller To compare performances of two $H_\infty$ controllers, it is assumed that both controllers were designed with same weighting functions except that the $\mu$-synthesis controller has structured uncertainties. By compared with the standard $H_\infty$ controller, we show that the designed controller has satisfactory robust performance as well as robust stability by simulations and experiments.

  • PDF

On the structure of a discrete-time $H_{\infty}$ two-degrees-of-freedom controller (이산시간 $H_{\infty}$ 2-자유도 제어기의 구조에 관한 연구)

  • 최병욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.569-572
    • /
    • 1996
  • Explicit state-space formulate for an H$_{.inf}$ based two-degrees-of-freedom robust controller are derived in discrete-time. The controller provides robust stability against coprime factor uncertainty, and a degree of robust performance in the sense of making the closed-loop system match a prespecified reference model. It is shown that the controller consists of a plant observer, the chosen reference model, and a generalized state feedback law associated with the plant and model states. The controller structure is shown to be relatively simple and thus may reduce the computational load on the digital control processor.

  • PDF

Stabilizable Predictiye Control with $H_{\infty}$ performance : The State-space approach ($H_{\infty}$ 성능을 가지는 안정화 예측제어 : 상태공간 접근법)

  • 정종남;조상현;전재완;박흥배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.269-269
    • /
    • 2000
  • This paper presents a predictive control with H$_{\infty}$ suboptimal performance which is robust to disturbances and has a guaranteed stability. In order to derive the control law conveniently, state-space based approach, where the state variable is involved explicitly in the controller design and implementation is allowed. So an input-output model is converted to an equivalent observable canonical state-space form. The suggested control guarantees the norm bounded system output values from disturbances. A systematic way using the LMI method is presented to obtain appropriate parameters for Quadratic stability condition and optimization problem.

  • PDF