• Title/Summary/Keyword: Robotic System

Search Result 821, Processing Time 0.024 seconds

Highly Sensitive Tactile Sensor Using Single Layer Graphene

  • Jung, Hyojin;Kim, Youngjun;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.229.1-229.1
    • /
    • 2014
  • Tactile sensors have widely been researched in the areas of electronics, robotic system and medical tools for extending to the form of bio inspired devices that generate feeling of touch mimicking those of humans. Recent efforts in adapting the tactile sensor have included the use of novel materials with both scalability and high sensitivity [1]. Graphene, a 2-D allotrope of carbon, is a prospective candidate for sensor technology, having strong mechanical properties [2] and flexibility, including recovery from mechanical stress. In addition, its truly 2-D nature allows the formation of continuous films that are intrinsically useful for realizing sensing functions. However, very few investigations have been carrier out to investigate sensing characteristics as a device form with the graphene subjected to strain/stress and pressure effects. In this study, we present a sensor of vertical forces based on single-layer graphene, with a working range that corresponds to the pressure of a gentle touch that can be perceived by humans. In spite of the low gauge factor that arises from the intrinsic electromechanical character of single-layer graphene, we achieve a resistance variation of about 30% in response to an applied vertical pressure of 5 kPa by introducing a pressure-amplifying structure in the sensor. In addition, we demonstrate a method to enhance the sensitivity of the sensor by applying resistive single-layer graphene.

  • PDF

Merging of Topological Map and Grid Map using Standardized Map Data Representation (표준화된 지도 데이터 표현방법을 이용한 위상지도와 격자지도의 병합)

  • Jin, Hee-Seon;Yu, Wonpil;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.2
    • /
    • pp.104-110
    • /
    • 2014
  • Mapping is a fundamental element for robotic services. There are available many types of map data representation such as grid map, metric map, topology map, etc. As more robots are deployed for services, more chances of exchanging map data among the robots emerge and standardization of map data representation (MDR) becomes more valuable. Currently, activities in developing MDR standard are underway in IEEE Robotics and Automation Society. The MDR standard is for a common representation and encoding of the two-dimensional map data used for navigation by mobile robots. The standard focuses on interchange of map data among components and systems, particularly those that may be supplied by different vendors. This paper aims to introduce MDR standard and its application to map merging. We have applied the basic structure of the MDR standard to a grid map and Voronoi graph as a kind of topology map and performed map merging between two different maps. Simulation results show that the proposed MDR is suitable for map data exchange among robots.

Stable Walking of a Humanoid Robot under Soft Terrains (부드러운 지면에서의 휴머노이드 로봇의 안정보행)

  • Yoo, Young-Kuk;Kim, Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.72-81
    • /
    • 2009
  • The purpose of this paper is to accomplish the stable humanoid robot walking on the soft terrains. The goal of the humanoid robot development is to make the robotic system perform some tasks in human living environment. However, human dwelling environments are very different from those of laboratories, where varied experiments are performed by the robot. In many cases, the ground is soft or elastic unlike the floor of a laboratory. When a robot walks on the soft ground, the sole of robot contacts the uneven ground. This results in unstable walking or walking may be impossible according to the degree of softness. Therefore, the algorithm that facilitates stable walking on the soft ground surface is required. In this paper, we suggest an algorithm that controls the ankle to help the robot walk stably on the soft ground using the humanoid robot (ISHURO-II) as a real model. A humanoid robot walking on the soft ground was simulated to verify that the proposed algorithm results in stable walking.

Design and Performance Evaluation of Tactile Device Using MR Fluid (MR 유체를 이용한 촉감구현장치의 설계 및 성능 평가)

  • Kim, Jin-Kyu;Oh, Jong-Seok;Han, Young-Min;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.415-420
    • /
    • 2012
  • This paper proposes a novel type of tactile device utilizing magnetorheological (MR) fluid which can be applicable for haptic master of minimally invasive surgery (MIS) robotic system. The salient feature of the controllability of rheological properties by the intensity of the magnetic field (or current) makes this potential candidate of the tactile device. As a first step, an appropriate size of the tactile device is designed and manufactured via magnetic analysis. Secondly, in order to determine proper input magnetic field the repulsive forces of the real body parts such as hand and neck are measured. Subsequently, the repulsive forces of the tactile device are measured by dividing 5 areas. The final step of this work is to obtain desired force in real implementation. Thus, in order to demonstrate this goal a neuro-fuzzy logic is applied to get the desired repulsive force and the error between the desired and actual force is evaluated.

  • PDF

An Experimental Study on Prediction of Bead Geometry for GTA Multi-pass Welding in Underhead Position (GTA 아래보기 자세 다층용접부의 비드형상 예측에 관한 실험적 연구)

  • Park, Min-Ho;Kim, Ill-Soo;Lee, Ji-Hye;Lee, Jong-Pyo;Kim, Young-Su;Na, Sang-Oh
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.53-60
    • /
    • 2014
  • The automatic arc welding is generally accepted as the preferred joining technique and commonly chosen for assembly of large metal structures such as in areas of automotive, aircraft and shipbuilding due to its joint strength, reliability, and low cost compared to other joint processes. Recently, several mathematical models have been developed and studied for control and monitoring welding quality, productivity, microstructure and weld properties in arc welding processes. This study indicates the prediction of process parameters for the expected welding quality with accordance to the adaptive GTA welding process. Furthermore, the mathematical models is also develop to aid the selection of an optimal welding process as the generation of process controls to predict the bead geometry as a function output parameters in the GTA welding process. The developed models through this study showed comparatively excellent predicted results, and will extend to other welding processes to integrate an optimized system for the robotic welding process.

Implementation of Path Finding Method using 3D Mapping for Autonomous Robotic (3차원 공간 맵핑을 통한 로봇의 경로 구현)

  • Son, Eun-Ho;Kim, Young-Chul;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.168-177
    • /
    • 2008
  • Path finding is a key element in the navigation of a mobile robot. To find a path, robot should know their position exactly, since the position error exposes a robot to many dangerous conditions. It could make a robot move to a wrong direction so that it may have damage by collision by the surrounding obstacles. We propose a method obtaining an accurate robot position. The localization of a mobile robot in its working environment performs by using a vision system and Virtual Reality Modeling Language(VRML). The robot identifies landmarks located in the environment. An image processing and neural network pattern matching techniques have been applied to find location of the robot. After the self-positioning procedure, the 2-D scene of the vision is overlaid onto a VRML scene. This paper describes how to realize the self-positioning, and shows the overlay between the 2-D and VRML scenes. The suggested method defines a robot's path successfully. An experiment using the suggested algorithm apply to a mobile robot has been performed and the result shows a good path tracking.

Traffic Fuzzy Control : Software and Hardware Implementations

  • Jamshidi, M.;Kelsey, R.;Bisset, K.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.907-910
    • /
    • 1993
  • This paper describes the use of fuzzy control and decision making to simulate the control of traffic flow at an intersection. To show the value of fuzzy logic as an alternative method for control of traffic environments. A traffic environment includes the lanes to and from an intersection, the intersection, vehicle traffic, and signal lights in the intersection. To test the fuzzy logic controller, a computer simulation was constructed to model a traffic environment. A typical cross intersection was chosen for the traffic environment, and the performance of the fuzzy logic controller was compared with the performance of two different types of conventional control. In the hardware verifications, fuzzy logic was used to control acceleration of a model train on a circular path. For the software experiment, the fuzzy logic controller proved better than conventional control methods, especially in the case of highly uneven traffic flow between different directions. On the hardware si e of the research, the fuzzy acceleration control system showed a marked improvement in smoothness of ride over crisp control.

  • PDF

A Consideration on the Process Technology and Application of MEMS to prepare for upcoming MEMS-based technological paradigm (MEMS 기반의 새로운 기술적 패러다임에 대비한 공정 기술 분석 및 적용에 대한 고찰)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.7
    • /
    • pp.979-986
    • /
    • 2013
  • Recently, in the electric, electronic, robotic, and medical industries, a great attention has been paid to the development of MEMS-based smart devices with a compact size and highly intelligency. The MEMS technology is very effective in designing into a compact size and lightweight by combining into one the complex electrical, mechanical, chemical, and biological features which are required by smart devices, and at the same time, in bulk batch manufacturing. Therefore, this study, to prepare for upcoming new MEMS-based technological paradigm, analyzes MEMS processes and then considers its Applications.

A Novel Single Lens 3D Endoscope and Endoscopic View Controller for Immersive Robotic Surgery System (몰입 로봇 수술을 위한 새로운 단일렌즈 3D 내시경과 시점 조절 시스템)

  • Yoo, Sunggeun;Park, Sangil;Yoon, Sojeong;Eom, Yumi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.524-526
    • /
    • 2015
  • 본 논문은 자유 시점조절과 깊이감 조절이 가능한 단일렌즈 양안시 3D 내시경과 Head-mounted display 를 사용한 새로운 로봇수술 시스템을 제안한다. 최근 들어서 여러 양안식 입체영상장치가 의료 영역에 적용되고 있다. 그러나 3D 의료 장비들은 zooming 과 자유로운 시점조절, 그리고 접사를 하는 데에 한계가 존재한다. 입체영상 장비에서 필연적으로 발생하는 이러한 문제점들은 3D 영화를 찍기 위해서 사용되는 것과 같은 2 대의 카메라와 2 개의 렌즈를 사용하는 데에서 원인을 찾을 수 있다. 이러한 문제점들은 Da Vinci 로봇 수술 시스템과 같은 가장 최신의 시스템에서도 해결되지 못하였다. 본 논문에서 제안하는 새로운 시스템은 지금까지 제시된 문제점들을 해결하고, 현재 존재하는 로봇 수술 시스템에 몰입 입체영상 수술이나 증강 현실 수술을 가능하게 하기 위한 목적으로 제안되었다.

  • PDF

Design and Control of Anthropomorphic Robot hand (인간형 다지 다관절 로봇 핸드의 개발)

  • Chun, Joo-Young;Choi, Byung-June;Chae, Han-Sang;Moon, Hyung-Pil;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.102-109
    • /
    • 2010
  • In this study, an anthropomorphic robot Hand, called "SKKU Hand III" is presented. The hand has thirteen DOF(Degree-Of-Freedom) and is designed based on the skeletal structure of the human hand. Each finger module(except thumb module) has three DOF and four joints with a saddle joint mechanism which has two DOF at the base joint. Two distal joints of the finger module are mechanically coupled by a timing belt and pulleys. The thumb module is composed of a finger module and an additional actuator, which makes it possible to realize the opposition between the thumb and the other fingers. In addition, the palm DOF of the human hand is mimicked with a spatial link mechanism between the index finger and the thumb. Thus, it can grasp objects more stably and more strongly. For the modularization of the robotic hand all the driving circuits are embedded in the hand, and only the communication lines supporting CAN protocol with DC power cable are given as an interface. Therefore, it is possible to apply it to any robot system the interface. To validate the feasibility of the SKKU Hand III, a series of the representative grasp experiments such as power, precision, intermediate grasp etc. are carried out with the object around us and its operation is demonstrated.