• Title/Summary/Keyword: Robotic Rehabilitation

Search Result 50, Processing Time 0.028 seconds

Development of Robotic Hand Module of NRC Exoskeleton Robot (NREX) (국립재활원 외골격 로봇(NREX)의 손 모듈 개발)

  • Song, Jun-Yong;Song, Won-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.162-170
    • /
    • 2015
  • This paper describes the development of a hand module of NREX (National Rehabilitation Center Robotic Exoskeleton) designed to assist individuals with sustained neurological impairments such as stroke and spinal cord injuries. To construct a simple and lightweight hand module, the robotic hand adopts a mechanism driven by a motor and moved by two four-bar linkages. The motor facilitates the flexion-extension movements of the thumb and the other four fingers simultaneously. Thus, an individual using the robotic hand module can effectively grip and release objects related to daily life activities. The robotic hand module has been designed to cover the range of motion with respect to its link distance. This hand module can be used in therapeutic rehabilitation as well as for daily life assistance. In addition, this hand module can either be mounted on an NREX or used as a standalone module.

A Feasibility Study on a Robotic Exercise System for MDOF Physical Rehabilitation Therapy

  • Sim, Hyung Joon;Won, Joo Yeon;Han, Chang Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1949-1960
    • /
    • 2004
  • This paper presents a robot system developed for medical purpose. A 6-degree-of-freedom robot was introduced for physical exercise and rehabilitation. This system was proposed for stroke patients or patients who cannot use one of their arms or legs. The robot system exercises the hemiplegic part based on the motion of normal part of a patient. Kinematic studies on the human body and robot were applied to develop the robotic rehabilitation exercise system. A clamp which acts as an end effector of the robot to hold a patient was designed and applied to the robot to guarantee the safety of patients. The proposed robotic rehabilitation system was verified by simulations and experiments on arm (elbow and shoulder) motion. Patients are expected to be able to exercise various motions by themselves with the proposed robotic rehabilitation system.

Noise Rejection of EMG Signals for the Control of Rehabilitation Robotic Am System (재활 로봇 팔 제어를 위한 근전도 신호의 잡음제거에 관한 연구)

  • 오승환;백승은;나승유;이희영
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.65-68
    • /
    • 2001
  • In the rehabilitation robotic arm systems for the disabled with spinal code injury, EMG signals are used in the control of the robotic arm. EMG signals are corrupted by many kinds of noises such as ECG signal, power noise and contact noise of electrode. Noise rejection improves the performance of the EMG pattern classification. In this paper, a variable bandwidth filter (VBF) and wavelet transform are used for the noise rejection of EMG signals and the comparison of SNR is given. Also, some statistical characteristics of features are investigated.

  • PDF

Prospects of Rehabilitation Welfare Devices: Based on Assistive and Robotic Devices (재활복지기기의 전망: 보조기기와 로봇장치를 중심으로)

  • Song, W.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • This paper reviews trends of the rehabilitation welfare devices on the basis of products and markets. Latest assistive devices tend to have a fold function. Auxiliary power assist module has been added. The completion of products has been improved. The folding function has strong relationship with portability. Specifically, various mobility devices, including foldable devices, are associated with enhanced portability. Powered auxiliary wheels and upper extremity supporting modules have entered the market. The leading-edge technology like Segway's control technology applies to two-wheel wheelchairs. The brand- new technology, lower extremity robotic exoskeleton, applies to markets. Standing wheelchairs, ramps, stair climbing assistive devices becomes more common. In addition, a combination of a variety of smart devices is being promoted to the classical assistive devices' part. Rehabilitation welfare devices can be more valuable due to nice industrial design, improved materials, and processing technology.

  • PDF

The effect of robotic therapy on patient function after total hip arthroplasty due to developmental dysplasia of the hip: a case study (발달성 엉덩관절 이형성증으로 인한 엉덩관절 전치환술 후 로봇치료가 환자의 기능에 미치는 영향: 사례연구 )

  • So Yeong Kim;Chi Bok Park;Byeong Geun Kim
    • Journal of Korean Physical Therapy Science
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Background: The advantages of robotic therapy have recently been attempted several times in the rehabilitation of total hip arthroplasty (THA) patients. Therefore, this study also aims to report a case of how robot therapy affects the function of THA patients due to developmental dysplasia of the hip (DDH). Design: Case Study. Method: This study used the A-B-A' design. Period A is before robotic therapy, period B is robotic therapy, and period A' is after robotic therapy. The subjects performed physical therapy and occupational therapy for five days each during the baseline period A and A'. In intervention period B, robotic therapy was performed for five days along with the baseline intervention. This study was conducted for a total of fifteen days. The subjects' sit to stand (STS), timed up and go (TUG), and 10 metre walk (10MW) were evaluated. Result:: STS and TUG were significantly improved in periods B and A' compared to period A (p<0.05), and STS was significantly improved in period A' compared to period B (p<0.05). 10MW showed no significant improvement in periods B and A' compared to period A. Conclusions: This study confirmed that robot therapy was an effective intervention in improving the function of women in their 30s who underwent THA due to DDH. In the future, a study comparing the control group should be performed.

Investigating coating material and conditions for rehabilitation of water transmission pipe using a robotic system (자동화 장비를 이용한 대형 상수관로 갱생을 위한 코팅재료 선정 및 방법에 관한 연구)

  • kim, Jinwon;Kim, Donghyun;Lee, Younggun;Lee, Sewan;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.725-736
    • /
    • 2016
  • There is a growing concern on the improvement of water distribution pipeline for multi-regional water supply system in Korea along with its aging infrastructure. Rehabilitation of large diameter pipeline is more efficient in cost and time compared to replacement with trenching. The procedure for rehabilitation are diagnosis, cleaning, spraying coating material, and final inspection. The internal state of pipeline was carefully diagnosed and got C grade, which required rehabilitation. We found that 17,274,787,000 Korean won could be saved after pipe surface coating because of increased C coefficient of Hazen-Williams equation. Optimal coating material was D polyurea. We also found optimal distance between spraying nozzle and pipe wall to be 70 - 80 cm, which were critical factors for coating quality. This study also illustrated the time for spray drying to be more than 30 min. These results could be used in the quality control process during rehabilitation of aged pipelines.

Intelligent rehabilitation robotic system for the handicapped and the elderly-KARES (장애인과 노약자를 위한 지능형 재활 로봇 시스템(KARES))

  • 송원경;김종명;윤용산;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1541-1544
    • /
    • 1997
  • The rehailitation robot, one of the service robot, is the important area in the service automation. In the paper, we describe the overall configuration of KARES(KAIST Rehabilitation Engineering System), which is an intellingent rehabilitaion robotic system designed to assist the independent livelihood of the handicapped and the eldrly. KARES consists of the 6 degree of freedom robot arm mounted on a wheelchair, the controller ofr the arm, sensors to perceive environment, and user interface. Basic desired hobs in KARES are gripping the target object and moving it to the user's face for eating, drinking, or cooperation work wiht the mouth. Currently, the manual operation of the arm is available for gripping to target objects. The autonomous functionality will be ginven for the facilities of the human operator.

  • PDF

A Study on Robotic Arm Control Method Based on Upper Extremity Electromyogram (상지 근전도 기반의 로봇 팔 제어방법에 대한 연구)

  • Kang, S.Y.;Eom, S.H.;Jang, M.S.;Lee, E.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.1
    • /
    • pp.73-80
    • /
    • 2015
  • In this paper, we propose the robotic arm control method based on upper extremity electromyogram for lower upper extremity amputation patient. The muscle activity of the forearm flexor, forearm extensor and biceps was analyzed to utilize distribution of muscle activity to a specific position in order to the control input. This control input is converted into a control command for controlling the robotic arm through the algorithm. For the experiment and verify the proposed method, 5DoF robotic arm control system was constructed with 1 channel EMG Module and PC applications through the interworking with each module to perform a three-channel EMG analysis. For accuracy and performance evaluation of control, Experiments were performed with robotic arms moving objects. As a result of experiments which after training for 10 hours by middle 20's man, Validity of the proposed method was evaluated based an average accuracy of 92.5%.

  • PDF

The effects of providing visual feedback and auditory stimulation using a robotic device on balance and gait abilities in persons with stroke: a pilot study

  • Park, Jae Ho;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.3
    • /
    • pp.125-131
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the effects of providing visual feedback and auditory stimulation using a robotic device on balance and gait abilities in stroke patients. Design: Randomized controlled pilot trial. Methods: Fifteen subjects were randomly divided into three groups where five subjects were in the visual feedback robotic device assist gait training (VRGT) group, five subjects in the auditory stimulation robotic device assist gait training (ARGT) group, and five subjects in the control group. Subjects received visual feedback and auditory stimulation while undergoing robotic gait training for 45 minutes, three times a week for 2 weeks, and all subjects had undergone general physical therapy for 30 minutes, five times a week for 2 weeks. All subjects were assessed with the Berg balance scale (BBS), timed up and go (TUG) test, and 10-meter walking test (10MWT) pre- and post-intervention. Results: All subjects showed that BBS, TUG test, and 10MWT scores significantly improved post-intervention (p<0.05), and the control group also had significantly improved post-treatment (p<0.05). The VRGT and the ARGT showed significant improvements in BBS, TUG, and 10MWT scores compared with the control group (p<0.05). The VRGT group showed a significant improvement in BBS, TUG, and 10MWT scores compared with the control group (p<0.05). In addition, it has been confirmed that VRGT had significantly improved in BBS, TUG test, and 10MWT scores compared with the auditory stimulation and control group (p<0.05). Conclusions: The results of this study showed improved balance and gait abilities after VRGT and ARGT groups compared with general physical therapy and was found to be effective in enhancing the functional activity of persons affected with stroke.