• Title/Summary/Keyword: Robotic Hand

Search Result 100, Processing Time 0.027 seconds

Development of Anthropomorphic Robot Hand SKK Robot Hand I

  • Taehun Kang;Park, Hyoukryeol;Kim, Moonsang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.230-238
    • /
    • 2003
  • In this paper, a three-fingered anthropomorphic robot hand, called SKK Robot Hand 1, is presented. By employing a two-DOF joint mechanism, called Double Active Universal Joint (abbreviated as DAUJ from now on) as its metacarpal joint, the hand makes it possible to mimic humanlike motions. We begin with addressing the motivation of the design and mention how the anthropomorphic feature of a human is realized in the design of SKK Hand I Also, the mechanism of the hand is explained in detail, and advantages in its modular design are discussed. The proposed hand is developed for use as a testbed for dextrous manipulation. It is expected to resolve the increasing demand for robotic applications in unstructured environments. We describe its hardware construction as well as the controller structure including the preliminary results of experiments.

A Vision-Based Method to Find Fingertips in a Closed Hand

  • Chaudhary, Ankit;Vatwani, Kapil;Agrawal, Tushar;Raheja, J.L.
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.399-408
    • /
    • 2012
  • Hand gesture recognition is an important area of research in the field of Human Computer Interaction (HCI). The geometric attributes of the hand play an important role in hand shape reconstruction and gesture recognition. That said, fingertips are one of the important attributes for the detection of hand gestures and can provide valuable information from hand images. Many methods are available in scientific literature for fingertips detection with an open hand but very poor results are available for fingertips detection when the hand is closed. This paper presents a new method for the detection of fingertips in a closed hand using the corner detection method and an advanced edge detection algorithm. It is important to note that the skin color segmentation methodology did not work for fingertips detection in a closed hand. Thus the proposed method applied Gabor filter techniques for the detection of edges and then applied the corner detection algorithm for the detection of fingertips through the edges. To check the accuracy of the method, this method was tested on a vast number of images taken with a webcam. The method resulted in a higher accuracy rate of detections from the images. The method was further implemented on video for testing its validity on real time image capturing. These closed hand fingertips detection would help in controlling an electro-mechanical robotic hand via hand gesture in a natural way.

Method of Object Identification Using Joint Data of Multi-Joint Robotic Gripper for Bin-picking (빈-피킹을 위한 다관절 로봇 그리퍼의 관절 데이터를 이용한 물체 인식 기법)

  • Park, Jongwoo;Park, Chanhun;Park, Dong Il;Kim, DooHyung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.522-531
    • /
    • 2016
  • In this study, we propose an object identification method for bin-picking developed for industrial robots. We identify the grasp posture and the associated geometric parameters of grasp objects using the joint data of a robotic gripper. Prior to grasp identification, we analyze the grasping motion in a low-dimensional space using principle component analysis (PCA) to reduce the dimensions. We collected the joint data from a human hand to demonstrate the grasp-identification algorithm. For data acquisition of the human grasp data, we conducted additional research on the motion characteristics of a human hand. We explain the method for using the algorithm of grasp identification for bin-picking. Finally, we present a subject for future research using our proposed algorithm of grasp model and identification.

Design and Control of Anthropomorphic Robot hand (인간형 다지 다관절 로봇 핸드의 개발)

  • Chun, Joo-Young;Choi, Byung-June;Chae, Han-Sang;Moon, Hyung-Pil;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.102-109
    • /
    • 2010
  • In this study, an anthropomorphic robot Hand, called "SKKU Hand III" is presented. The hand has thirteen DOF(Degree-Of-Freedom) and is designed based on the skeletal structure of the human hand. Each finger module(except thumb module) has three DOF and four joints with a saddle joint mechanism which has two DOF at the base joint. Two distal joints of the finger module are mechanically coupled by a timing belt and pulleys. The thumb module is composed of a finger module and an additional actuator, which makes it possible to realize the opposition between the thumb and the other fingers. In addition, the palm DOF of the human hand is mimicked with a spatial link mechanism between the index finger and the thumb. Thus, it can grasp objects more stably and more strongly. For the modularization of the robotic hand all the driving circuits are embedded in the hand, and only the communication lines supporting CAN protocol with DC power cable are given as an interface. Therefore, it is possible to apply it to any robot system the interface. To validate the feasibility of the SKKU Hand III, a series of the representative grasp experiments such as power, precision, intermediate grasp etc. are carried out with the object around us and its operation is demonstrated.

Development of an End-Effector for Cucumber Robotic Harvester (오이 로봇 수확용 엔드이펙터 개발)

  • 민병로;문정환;이대원
    • Journal of Bio-Environment Control
    • /
    • v.12 no.2
    • /
    • pp.63-67
    • /
    • 2003
  • Cucumber fruits requires a lot of labor to harvest in time in Korea, since the fruits are cut and grabbed by hand. In this study, we developed an end-effector for robotic harvester of cucumber fruits. Its development involved the integration of an end-effector system with a PC compatible, DC motors, and a motor controller board. Software, written in Pic-basic, combined the functions of motor control with various circumstances. Cucumber's properties were measured and analyzed for precision of the end-effector. The results were similar to those of other vegetables. Properties including hardness of cucumber fruits were used as basic data for development of a harvester.

Esthetic neck dissection using an endoscope via retroauricular incision: a report of two cases

  • Kim, Jae-Young;Cho, Hoon;Cha, In-Ho;Nam, Woong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.1
    • /
    • pp.27-31
    • /
    • 2014
  • Various surgical techniques, such as endoscopic surgery and robotic surgery, are developed to optimize the esthetic outcome even in operations for malignancy. A modified face-lift or retroauricular approach are used to minimize postoperative scarring. Recently, robot-assisted surgery is being done in various fields and considered as favorable treatment method by many surgeons. However its high cost is a nonnegligible fraction for many patients. On the other hand, endoscopic surgery, which is cheaper than robotic surgery, is minimally invasive with contentable neck dissection. Although it is a difficult technique for a beginner surgeon due to its limited operation view, we suppose it as an alternative method for robotic surgery. Herein, we report two cases of endoscopic neck dissection via retroauricular incision with a discussion regarding the pros and cons of endoscopic neck dissection.

Door opening control using the multi-fingered robotic hand for the indoor service robot PSR

  • Rhee, Chang-Ju;Shim, Young-Bo;Chung, Woo-Jin;Kim, Mun-Sang;Park, Jong-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1093-1098
    • /
    • 2003
  • In this paper, a practical methodology of hand-manipulator motion coordination for indoor service robot is introduced. This paper describes the procedures of opening door performed by service robot as a noticeable example of motion coordination. This paper presents well-structured framework for hand-manipulator motion coordination, which includes intelligent sensor data interpretation, object shape estimation, optimal grasping, on-line motion planning and behavior-based task execution. This proposed approach is focused on how to integrate the respective functions in harmony and enable the robot to complete its operation under the limitation of usable resources. As a practical example of implementation, the successful experimental results in opening door whose geometric parameters are unknown beforehand are provided.

  • PDF

Intelligent systems for control

  • Erickson, Jon D.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.4-12
    • /
    • 1996
  • This keynote presentation covers the subject of intelligent systems development for monitoring and control in various NASA space applications. Similar intelligent systems technology also has applications in terrestrial commercial applications. Discussion will be given of the general approach of intelligent systems and description given of intelligent systems under prototype development for possible use in Space Shuttle Upgrade, in the Experimental Crew Return. Vehicle, and in free-flying space robotic cameras to provide autonomy to these spacecraft with flexible human intervention, if desired or needed. Development of intelligent system monitoring and control for regenerative life support subsystems such as NASA's human rated Bio-PLEX test facility is also described. A video showing two recent world's firsts in real-time vision-guided robotic arm and hand grasping of tumbling and translating complex shaped objects in micro-gravity will also be shown.

  • PDF

A CONTROLLER DESIGN GUARARNTEEING PRECISE TRAJAECTORY FOLLOWING FOR A ROBOTIC MANIPULATOR

  • Kee, Chang-Doo;Hwang, Won-Gul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.981-986
    • /
    • 1988
  • A controller synthesis procedure for precise tracking of reference inputs in the sense of spheres is applied to a 3 d.o.f. robotic manipulator. This methodology applies to a class of nonlinear systems with input uncertainty and parameter uncertainty. The 3 d.o.f. manipulator to be controlled is subjected to varying payloads and is required to follow specified joint trajectories to within prespecified tolerances. The design procedure above lends itself naturally to this type of control problem. The appeal of such a design procedure lies on a special decomposition which exploits linear control theory on the one hand and facilitates a separate treatment of the effects of nonlinearities and the uncertainties on the other.

  • PDF